/* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> * * Derived from arch/arm/kvm/guest.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/errno.h> #include <linux/err.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <asm/cputype.h> #include <asm/uaccess.h> #include <asm/kvm.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_coproc.h> #include "trace.h" struct kvm_stats_debugfs_item debugfs_entries[] = { { NULL } }; int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { return 0; } static u64 core_reg_offset_from_id(u64 id) { return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); } static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* * Because the kvm_regs structure is a mix of 32, 64 and * 128bit fields, we index it as if it was a 32bit * array. Hence below, nr_regs is the number of entries, and * off the index in the "array". */ __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; struct kvm_regs *regs = vcpu_gp_regs(vcpu); int nr_regs = sizeof(*regs) / sizeof(__u32); u32 off; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= nr_regs || (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) return -ENOENT; if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; struct kvm_regs *regs = vcpu_gp_regs(vcpu); int nr_regs = sizeof(*regs) / sizeof(__u32); __uint128_t tmp; void *valp = &tmp; u64 off; int err = 0; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= nr_regs || (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) return -ENOENT; if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) return -EINVAL; if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { err = -EFAULT; goto out; } if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK; switch (mode) { case COMPAT_PSR_MODE_USR: case COMPAT_PSR_MODE_FIQ: case COMPAT_PSR_MODE_IRQ: case COMPAT_PSR_MODE_SVC: case COMPAT_PSR_MODE_ABT: case COMPAT_PSR_MODE_UND: case PSR_MODE_EL0t: case PSR_MODE_EL1t: case PSR_MODE_EL1h: break; default: err = -EINVAL; goto out; } } memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id)); out: return err; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } static unsigned long num_core_regs(void) { return sizeof(struct kvm_regs) / sizeof(__u32); } /** * ARM64 versions of the TIMER registers, always available on arm64 */ #define NUM_TIMER_REGS 3 static bool is_timer_reg(u64 index) { switch (index) { case KVM_REG_ARM_TIMER_CTL: case KVM_REG_ARM_TIMER_CNT: case KVM_REG_ARM_TIMER_CVAL: return true; } return false; } static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) return -EFAULT; return 0; } static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; int ret; ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); if (ret != 0) return -EFAULT; return kvm_arm_timer_set_reg(vcpu, reg->id, val); } static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; val = kvm_arm_timer_get_reg(vcpu, reg->id); return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; } /** * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG * * This is for all registers. */ unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) { return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu) + NUM_TIMER_REGS; } /** * kvm_arm_copy_reg_indices - get indices of all registers. * * We do core registers right here, then we apppend system regs. */ int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE; int ret; for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { if (put_user(core_reg | i, uindices)) return -EFAULT; uindices++; } ret = copy_timer_indices(vcpu, uindices); if (ret) return ret; uindices += NUM_TIMER_REGS; return kvm_arm_copy_sys_reg_indices(vcpu, uindices); } int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) return -EINVAL; /* Register group 16 means we want a core register. */ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) return get_core_reg(vcpu, reg); if (is_timer_reg(reg->id)) return get_timer_reg(vcpu, reg); return kvm_arm_sys_reg_get_reg(vcpu, reg); } int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) return -EINVAL; /* Register group 16 means we set a core register. */ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) return set_core_reg(vcpu, reg); if (is_timer_reg(reg->id)) return set_timer_reg(vcpu, reg); return kvm_arm_sys_reg_set_reg(vcpu, reg); } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int __attribute_const__ kvm_target_cpu(void) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_number = read_cpuid_part_number(); switch (implementor) { case ARM_CPU_IMP_ARM: switch (part_number) { case ARM_CPU_PART_AEM_V8: return KVM_ARM_TARGET_AEM_V8; case ARM_CPU_PART_FOUNDATION: return KVM_ARM_TARGET_FOUNDATION_V8; case ARM_CPU_PART_CORTEX_A53: return KVM_ARM_TARGET_CORTEX_A53; case ARM_CPU_PART_CORTEX_A57: return KVM_ARM_TARGET_CORTEX_A57; }; break; case ARM_CPU_IMP_APM: switch (part_number) { case APM_CPU_PART_POTENZA: return KVM_ARM_TARGET_XGENE_POTENZA; }; break; }; /* Return a default generic target */ return KVM_ARM_TARGET_GENERIC_V8; } int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) { int target = kvm_target_cpu(); if (target < 0) return -ENODEV; memset(init, 0, sizeof(*init)); /* * For now, we don't return any features. * In future, we might use features to return target * specific features available for the preferred * target type. */ init->target = (__u32)target; return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; } #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ KVM_GUESTDBG_USE_SW_BP | \ KVM_GUESTDBG_USE_HW | \ KVM_GUESTDBG_SINGLESTEP) /** * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging * @kvm: pointer to the KVM struct * @kvm_guest_debug: the ioctl data buffer * * This sets up and enables the VM for guest debugging. Userspace * passes in a control flag to enable different debug types and * potentially other architecture specific information in the rest of * the structure. */ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { trace_kvm_set_guest_debug(vcpu, dbg->control); if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) return -EINVAL; if (dbg->control & KVM_GUESTDBG_ENABLE) { vcpu->guest_debug = dbg->control; /* Hardware assisted Break and Watch points */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { vcpu->arch.external_debug_state = dbg->arch; } } else { /* If not enabled clear all flags */ vcpu->guest_debug = 0; } return 0; }