Virtual Routing and Forwarding (VRF) ==================================== The VRF device combined with ip rules provides the ability to create virtual routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the Linux network stack. One use case is the multi-tenancy problem where each tenant has their own unique routing tables and in the very least need different default gateways. Processes can be "VRF aware" by binding a socket to the VRF device. Packets through the socket then use the routing table associated with the VRF device. An important feature of the VRF device implementation is that it impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected (ie., they do not need to be run in each VRF). The design also allows the use of higher priority ip rules (Policy Based Routing, PBR) to take precedence over the VRF device rules directing specific traffic as desired. In addition, VRF devices allow VRFs to be nested within namespaces. For example network namespaces provide separation of network interfaces at L1 (Layer 1 separation), VLANs on the interfaces within a namespace provide L2 separation and then VRF devices provide L3 separation. Design ------ A VRF device is created with an associated route table. Network interfaces are then enslaved to a VRF device: +-----------------------------+ | vrf-blue | ===> route table 10 +-----------------------------+ | | | +------+ +------+ +-------------+ | eth1 | | eth2 | ... | bond1 | +------+ +------+ +-------------+ | | +------+ +------+ | eth8 | | eth9 | +------+ +------+ Packets received on an enslaved device and are switched to the VRF device using an rx_handler which gives the impression that packets flow through the VRF device. Similarly on egress routing rules are used to send packets to the VRF device driver before getting sent out the actual interface. This allows tcpdump on a VRF device to capture all packets into and out of the VRF as a whole.[1] Similiarly, netfilter [2] and tc rules can be applied using the VRF device to specify rules that apply to the VRF domain as a whole. [1] Packets in the forwarded state do not flow through the device, so those packets are not seen by tcpdump. Will revisit this limitation in a future release. [2] Iptables on ingress is limited to NF_INET_PRE_ROUTING only with skb->dev set to real ingress device and egress is limited to NF_INET_POST_ROUTING. Will revisit this limitation in a future release. Setup ----- 1. VRF device is created with an association to a FIB table. e.g, ip link add vrf-blue type vrf table 10 ip link set dev vrf-blue up 2. Rules are added that send lookups to the associated FIB table when the iif or oif is the VRF device. e.g., ip ru add oif vrf-blue table 10 ip ru add iif vrf-blue table 10 Set the default route for the table (and hence default route for the VRF). e.g, ip route add table 10 prohibit default 3. Enslave L3 interfaces to a VRF device. e.g, ip link set dev eth1 master vrf-blue Local and connected routes for enslaved devices are automatically moved to the table associated with VRF device. Any additional routes depending on the enslaved device will need to be reinserted following the enslavement. 4. Additional VRF routes are added to associated table. e.g., ip route add table 10 ... Applications ------------ Applications that are to work within a VRF need to bind their socket to the VRF device: setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1); or to specify the output device using cmsg and IP_PKTINFO. Limitations ----------- Index of original ingress interface is not available via cmsg. Will address soon. ################################################################################ Using iproute2 for VRFs ======================= VRF devices do *not* have to start with 'vrf-'. That is a convention used here for emphasis of the device type, similar to use of 'br' in bridge names. 1. Create a VRF To instantiate a VRF device and associate it with a table: $ ip link add dev NAME type vrf table ID Remember to add the ip rules as well: $ ip ru add oif NAME table 10 $ ip ru add iif NAME table 10 $ ip -6 ru add oif NAME table 10 $ ip -6 ru add iif NAME table 10 Without the rules route lookups are not directed to the table. For example: $ ip link add dev vrf-blue type vrf table 10 $ ip ru add pref 200 oif vrf-blue table 10 $ ip ru add pref 200 iif vrf-blue table 10 $ ip -6 ru add pref 200 oif vrf-blue table 10 $ ip -6 ru add pref 200 iif vrf-blue table 10 2. List VRFs To list VRFs that have been created: $ ip [-d] link show type vrf NOTE: The -d option is needed to show the table id For example: $ ip -d link show type vrf 11: vrf-mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 1 addrgenmode eui64 12: vrf-red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 10 addrgenmode eui64 13: vrf-blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 66 addrgenmode eui64 14: vrf-green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 81 addrgenmode eui64 Or in brief output: $ ip -br link show type vrf vrf-mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> vrf-red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> vrf-blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> vrf-green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> 3. Assign a Network Interface to a VRF Network interfaces are assigned to a VRF by enslaving the netdevice to a VRF device: $ ip link set dev NAME master VRF-NAME On enslavement connected and local routes are automatically moved to the table associated with the VRF device. For example: $ ip link set dev eth0 master vrf-mgmt 4. Show Devices Assigned to a VRF To show devices that have been assigned to a specific VRF add the master option to the ip command: $ ip link show master VRF-NAME For example: $ ip link show master vrf-red 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff Or using the brief output: $ ip -br link show master vrf-red eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP> eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP> eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST> 5. Show Neighbor Entries for a VRF To list neighbor entries associated with devices enslaved to a VRF device add the master option to the ip command: $ ip [-6] neigh show master VRF-NAME For example: $ ip neigh show master vrf-red 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE $ ip -6 neigh show master vrf-red 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 6. Show Addresses for a VRF To show addresses for interfaces associated with a VRF add the master option to the ip command: $ ip addr show master VRF-NAME For example: $ ip addr show master vrf-red 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1 valid_lft forever preferred_lft forever inet6 2002:1::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::ff:fe00:202/64 scope link valid_lft forever preferred_lft forever 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2 valid_lft forever preferred_lft forever inet6 2002:2::2/120 scope global valid_lft forever preferred_lft forever inet6 fe80::ff:fe00:203/64 scope link valid_lft forever preferred_lft forever 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN group default qlen 1000 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff Or in brief format: $ ip -br addr show master vrf-red eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64 eth5 DOWN 7. Show Routes for a VRF To show routes for a VRF use the ip command to display the table associated with the VRF device: $ ip [-6] route show table ID For example: $ ip route show table vrf-red prohibit default broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2 $ ip -6 route show table vrf-red local 2002:1:: dev lo proto none metric 0 pref medium local 2002:1::2 dev lo proto none metric 0 pref medium 2002:1::/120 dev eth1 proto kernel metric 256 pref medium local 2002:2:: dev lo proto none metric 0 pref medium local 2002:2::2 dev lo proto none metric 0 pref medium 2002:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80:: dev lo proto none metric 0 pref medium local fe80:: dev lo proto none metric 0 pref medium local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev vrf-red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium 8. Route Lookup for a VRF A test route lookup can be done for a VRF by adding the oif option to ip: $ ip [-6] route get oif VRF-NAME ADDRESS For example: $ ip route get 10.2.1.40 oif vrf-red 10.2.1.40 dev eth1 table vrf-red src 10.2.1.2 cache $ ip -6 route get 2002:1::32 oif vrf-red 2002:1::32 from :: dev eth1 table vrf-red proto kernel src 2002:1::2 metric 256 pref medium 9. Removing Network Interface from a VRF Network interfaces are removed from a VRF by breaking the enslavement to the VRF device: $ ip link set dev NAME nomaster Connected routes are moved back to the default table and local entries are moved to the local table. For example: $ ip link set dev eth0 nomaster -------------------------------------------------------------------------------- Commands used in this example: cat >> /etc/iproute2/rt_tables <<EOF 1 vrf-mgmt 10 vrf-red 66 vrf-blue 81 vrf-green EOF function vrf_create { VRF=$1 TBID=$2 # create VRF device ip link add vrf-${VRF} type vrf table ${TBID} # add rules that direct lookups to vrf table ip ru add pref 200 oif vrf-${VRF} table ${TBID} ip ru add pref 200 iif vrf-${VRF} table ${TBID} ip -6 ru add pref 200 oif vrf-${VRF} table ${TBID} ip -6 ru add pref 200 iif vrf-${VRF} table ${TBID} if [ "${VRF}" != "mgmt" ]; then ip route add table ${TBID} prohibit default fi ip link set dev vrf-${VRF} up ip link set dev vrf-${VRF} state up } vrf_create mgmt 1 ip link set dev eth0 master vrf-mgmt vrf_create red 10 ip link set dev eth1 master vrf-red ip link set dev eth2 master vrf-red ip link set dev eth5 master vrf-red vrf_create blue 66 ip link set dev eth3 master vrf-blue vrf_create green 81 ip link set dev eth4 master vrf-green Interface addresses from /etc/network/interfaces: auto eth0 iface eth0 inet static address 10.0.0.2 netmask 255.255.255.0 gateway 10.0.0.254 iface eth0 inet6 static address 2000:1::2 netmask 120 auto eth1 iface eth1 inet static address 10.2.1.2 netmask 255.255.255.0 iface eth1 inet6 static address 2002:1::2 netmask 120 auto eth2 iface eth2 inet static address 10.2.2.2 netmask 255.255.255.0 iface eth2 inet6 static address 2002:2::2 netmask 120 auto eth3 iface eth3 inet static address 10.2.3.2 netmask 255.255.255.0 iface eth3 inet6 static address 2002:3::2 netmask 120 auto eth4 iface eth4 inet static address 10.2.4.2 netmask 255.255.255.0 iface eth4 inet6 static address 2002:4::2 netmask 120