From bb756eebdac6fd24e8919e2c43f7d2c8c4091f59 Mon Sep 17 00:00:00 2001 From: RajithaY Date: Tue, 25 Apr 2017 03:31:15 -0700 Subject: Adding qemu as a submodule of KVMFORNFV This Patch includes the changes to add qemu as a submodule to kvmfornfv repo and make use of the updated latest qemu for the execution of all testcase Change-Id: I1280af507a857675c7f81d30c95255635667bdd7 Signed-off-by:RajithaY --- .../ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c | 2581 -------------------- 1 file changed, 2581 deletions(-) delete mode 100644 qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c (limited to 'qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c') diff --git a/qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c b/qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c deleted file mode 100644 index 7891d39ea..000000000 --- a/qemu/roms/ipxe/src/drivers/net/ath/ath5k/ath5k_phy.c +++ /dev/null @@ -1,2581 +0,0 @@ -/* - * PHY functions - * - * Copyright (c) 2004-2007 Reyk Floeter - * Copyright (c) 2006-2009 Nick Kossifidis - * Copyright (c) 2007-2008 Jiri Slaby - * Copyright (c) 2008-2009 Felix Fietkau - * - * Lightly modified for iPXE, July 2009, by Joshua Oreman . - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - */ - -FILE_LICENCE ( MIT ); - -#define _ATH5K_PHY - -#include -#include - -#include "ath5k.h" -#include "reg.h" -#include "base.h" -#include "rfbuffer.h" -#include "rfgain.h" - -static inline int min(int x, int y) -{ - return (x < y) ? x : y; -} - -static inline int max(int x, int y) -{ - return (x > y) ? x : y; -} - -/* - * Used to modify RF Banks before writing them to AR5K_RF_BUFFER - */ -static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, - const struct ath5k_rf_reg *rf_regs, - u32 val, u8 reg_id, int set) -{ - const struct ath5k_rf_reg *rfreg = NULL; - u8 offset, bank, num_bits, col, position; - u16 entry; - u32 mask, data, last_bit, bits_shifted, first_bit; - u32 *rfb; - s32 bits_left; - unsigned i; - - data = 0; - rfb = ah->ah_rf_banks; - - for (i = 0; i < ah->ah_rf_regs_count; i++) { - if (rf_regs[i].index == reg_id) { - rfreg = &rf_regs[i]; - break; - } - } - - if (rfb == NULL || rfreg == NULL) { - DBG("ath5k: RF register not found!\n"); - /* should not happen */ - return 0; - } - - bank = rfreg->bank; - num_bits = rfreg->field.len; - first_bit = rfreg->field.pos; - col = rfreg->field.col; - - /* first_bit is an offset from bank's - * start. Since we have all banks on - * the same array, we use this offset - * to mark each bank's start */ - offset = ah->ah_offset[bank]; - - /* Boundary check */ - if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { - DBG("ath5k: RF invalid values at offset %d\n", offset); - return 0; - } - - entry = ((first_bit - 1) / 8) + offset; - position = (first_bit - 1) % 8; - - if (set) - data = ath5k_hw_bitswap(val, num_bits); - - for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; - position = 0, entry++) { - - last_bit = (position + bits_left > 8) ? 8 : - position + bits_left; - - mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << - (col * 8); - - if (set) { - rfb[entry] &= ~mask; - rfb[entry] |= ((data << position) << (col * 8)) & mask; - data >>= (8 - position); - } else { - data |= (((rfb[entry] & mask) >> (col * 8)) >> position) - << bits_shifted; - bits_shifted += last_bit - position; - } - - bits_left -= 8 - position; - } - - data = set ? 1 : ath5k_hw_bitswap(data, num_bits); - - return data; -} - -/**********************\ -* RF Gain optimization * -\**********************/ - -/* - * This code is used to optimize rf gain on different environments - * (temprature mostly) based on feedback from a power detector. - * - * It's only used on RF5111 and RF5112, later RF chips seem to have - * auto adjustment on hw -notice they have a much smaller BANK 7 and - * no gain optimization ladder-. - * - * For more infos check out this patent doc - * http://www.freepatentsonline.com/7400691.html - * - * This paper describes power drops as seen on the receiver due to - * probe packets - * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues - * %20of%20Power%20Control.pdf - * - * And this is the MadWiFi bug entry related to the above - * http://madwifi-project.org/ticket/1659 - * with various measurements and diagrams - * - * TODO: Deal with power drops due to probes by setting an apropriate - * tx power on the probe packets ! Make this part of the calibration process. - */ - -/* Initialize ah_gain durring attach */ -int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) -{ - /* Initialize the gain optimization values */ - switch (ah->ah_radio) { - case AR5K_RF5111: - ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; - ah->ah_gain.g_low = 20; - ah->ah_gain.g_high = 35; - ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; - break; - case AR5K_RF5112: - ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; - ah->ah_gain.g_low = 20; - ah->ah_gain.g_high = 85; - ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; - break; - default: - return -EINVAL; - } - - return 0; -} - -/* Schedule a gain probe check on the next transmited packet. - * That means our next packet is going to be sent with lower - * tx power and a Peak to Average Power Detector (PAPD) will try - * to measure the gain. - * - * TODO: Use propper tx power setting for the probe packet so - * that we don't observe a serious power drop on the receiver - * - * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) - * just after we enable the probe so that we don't mess with - * standard traffic ? Maybe it's time to use sw interrupts and - * a probe tasklet !!! - */ -static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) -{ - - /* Skip if gain calibration is inactive or - * we already handle a probe request */ - if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) - return; - - /* Send the packet with 2dB below max power as - * patent doc suggest */ - ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, - AR5K_PHY_PAPD_PROBE_TXPOWER) | - AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); - - ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; - -} - -/* Calculate gain_F measurement correction - * based on the current step for RF5112 rev. 2 */ -static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) -{ - u32 mix, step; - const struct ath5k_gain_opt *go; - const struct ath5k_gain_opt_step *g_step; - const struct ath5k_rf_reg *rf_regs; - - /* Only RF5112 Rev. 2 supports it */ - if ((ah->ah_radio != AR5K_RF5112) || - (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) - return 0; - - go = &rfgain_opt_5112; - rf_regs = rf_regs_5112a; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); - - g_step = &go->go_step[ah->ah_gain.g_step_idx]; - - if (ah->ah_rf_banks == NULL) - return 0; - - ah->ah_gain.g_f_corr = 0; - - /* No VGA (Variable Gain Amplifier) override, skip */ - if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1) - return 0; - - /* Mix gain stepping */ - step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0); - - /* Mix gain override */ - mix = g_step->gos_param[0]; - - switch (mix) { - case 3: - ah->ah_gain.g_f_corr = step * 2; - break; - case 2: - ah->ah_gain.g_f_corr = (step - 5) * 2; - break; - case 1: - ah->ah_gain.g_f_corr = step; - break; - default: - ah->ah_gain.g_f_corr = 0; - break; - } - - return ah->ah_gain.g_f_corr; -} - -/* Check if current gain_F measurement is in the range of our - * power detector windows. If we get a measurement outside range - * we know it's not accurate (detectors can't measure anything outside - * their detection window) so we must ignore it */ -static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) -{ - const struct ath5k_rf_reg *rf_regs; - u32 step, mix_ovr, level[4]; - - if (ah->ah_rf_banks == NULL) - return 0; - - if (ah->ah_radio == AR5K_RF5111) { - - rf_regs = rf_regs_5111; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); - - step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, - 0); - - level[0] = 0; - level[1] = (step == 63) ? 50 : step + 4; - level[2] = (step != 63) ? 64 : level[0]; - level[3] = level[2] + 50 ; - - ah->ah_gain.g_high = level[3] - - (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); - ah->ah_gain.g_low = level[0] + - (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); - } else { - - rf_regs = rf_regs_5112; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); - - mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, - 0); - - level[0] = level[2] = 0; - - if (mix_ovr == 1) { - level[1] = level[3] = 83; - } else { - level[1] = level[3] = 107; - ah->ah_gain.g_high = 55; - } - } - - return (ah->ah_gain.g_current >= level[0] && - ah->ah_gain.g_current <= level[1]) || - (ah->ah_gain.g_current >= level[2] && - ah->ah_gain.g_current <= level[3]); -} - -/* Perform gain_F adjustment by choosing the right set - * of parameters from rf gain optimization ladder */ -static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) -{ - const struct ath5k_gain_opt *go; - const struct ath5k_gain_opt_step *g_step; - int ret = 0; - - switch (ah->ah_radio) { - case AR5K_RF5111: - go = &rfgain_opt_5111; - break; - case AR5K_RF5112: - go = &rfgain_opt_5112; - break; - default: - return 0; - } - - g_step = &go->go_step[ah->ah_gain.g_step_idx]; - - if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { - - /* Reached maximum */ - if (ah->ah_gain.g_step_idx == 0) - return -1; - - for (ah->ah_gain.g_target = ah->ah_gain.g_current; - ah->ah_gain.g_target >= ah->ah_gain.g_high && - ah->ah_gain.g_step_idx > 0; - g_step = &go->go_step[ah->ah_gain.g_step_idx]) - ah->ah_gain.g_target -= 2 * - (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - - g_step->gos_gain); - - ret = 1; - goto done; - } - - if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { - - /* Reached minimum */ - if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) - return -2; - - for (ah->ah_gain.g_target = ah->ah_gain.g_current; - ah->ah_gain.g_target <= ah->ah_gain.g_low && - ah->ah_gain.g_step_idx < go->go_steps_count-1; - g_step = &go->go_step[ah->ah_gain.g_step_idx]) - ah->ah_gain.g_target -= 2 * - (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - - g_step->gos_gain); - - ret = 2; - goto done; - } - -done: - DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, " - "target gain %d\n", ret, ah->ah_gain.g_step_idx, - ah->ah_gain.g_current, ah->ah_gain.g_target); - - return ret; -} - -/* Main callback for thermal rf gain calibration engine - * Check for a new gain reading and schedule an adjustment - * if needed. - * - * TODO: Use sw interrupt to schedule reset if gain_F needs - * adjustment */ -enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) -{ - u32 data, type; - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - - if (ah->ah_rf_banks == NULL || - ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) - return AR5K_RFGAIN_INACTIVE; - - /* No check requested, either engine is inactive - * or an adjustment is already requested */ - if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) - goto done; - - /* Read the PAPD (Peak to Average Power Detector) - * register */ - data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); - - /* No probe is scheduled, read gain_F measurement */ - if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { - ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; - type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); - - /* If tx packet is CCK correct the gain_F measurement - * by cck ofdm gain delta */ - if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { - if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) - ah->ah_gain.g_current += - ee->ee_cck_ofdm_gain_delta; - else - ah->ah_gain.g_current += - AR5K_GAIN_CCK_PROBE_CORR; - } - - /* Further correct gain_F measurement for - * RF5112A radios */ - if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { - ath5k_hw_rf_gainf_corr(ah); - ah->ah_gain.g_current = - ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? - (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : - 0; - } - - /* Check if measurement is ok and if we need - * to adjust gain, schedule a gain adjustment, - * else switch back to the acive state */ - if (ath5k_hw_rf_check_gainf_readback(ah) && - AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && - ath5k_hw_rf_gainf_adjust(ah)) { - ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; - } else { - ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; - } - } - -done: - return ah->ah_gain.g_state; -} - -/* Write initial rf gain table to set the RF sensitivity - * this one works on all RF chips and has nothing to do - * with gain_F calibration */ -int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) -{ - const struct ath5k_ini_rfgain *ath5k_rfg; - unsigned int i, size; - - switch (ah->ah_radio) { - case AR5K_RF5111: - ath5k_rfg = rfgain_5111; - size = ARRAY_SIZE(rfgain_5111); - break; - case AR5K_RF5112: - ath5k_rfg = rfgain_5112; - size = ARRAY_SIZE(rfgain_5112); - break; - case AR5K_RF2413: - ath5k_rfg = rfgain_2413; - size = ARRAY_SIZE(rfgain_2413); - break; - case AR5K_RF2316: - ath5k_rfg = rfgain_2316; - size = ARRAY_SIZE(rfgain_2316); - break; - case AR5K_RF5413: - ath5k_rfg = rfgain_5413; - size = ARRAY_SIZE(rfgain_5413); - break; - case AR5K_RF2317: - case AR5K_RF2425: - ath5k_rfg = rfgain_2425; - size = ARRAY_SIZE(rfgain_2425); - break; - default: - return -EINVAL; - } - - switch (freq) { - case AR5K_INI_RFGAIN_2GHZ: - case AR5K_INI_RFGAIN_5GHZ: - break; - default: - return -EINVAL; - } - - for (i = 0; i < size; i++) { - AR5K_REG_WAIT(i); - ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], - (u32)ath5k_rfg[i].rfg_register); - } - - return 0; -} - - - -/********************\ -* RF Registers setup * -\********************/ - - -/* - * Setup RF registers by writing rf buffer on hw - */ -int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel, - unsigned int mode) -{ - const struct ath5k_rf_reg *rf_regs; - const struct ath5k_ini_rfbuffer *ini_rfb; - const struct ath5k_gain_opt *go = NULL; - const struct ath5k_gain_opt_step *g_step; - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - u8 ee_mode = 0; - u32 *rfb; - int obdb = -1, bank = -1; - unsigned i; - - switch (ah->ah_radio) { - case AR5K_RF5111: - rf_regs = rf_regs_5111; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); - ini_rfb = rfb_5111; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); - go = &rfgain_opt_5111; - break; - case AR5K_RF5112: - if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { - rf_regs = rf_regs_5112a; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); - ini_rfb = rfb_5112a; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); - } else { - rf_regs = rf_regs_5112; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); - ini_rfb = rfb_5112; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); - } - go = &rfgain_opt_5112; - break; - case AR5K_RF2413: - rf_regs = rf_regs_2413; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); - ini_rfb = rfb_2413; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); - break; - case AR5K_RF2316: - rf_regs = rf_regs_2316; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); - ini_rfb = rfb_2316; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); - break; - case AR5K_RF5413: - rf_regs = rf_regs_5413; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); - ini_rfb = rfb_5413; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); - break; - case AR5K_RF2317: - rf_regs = rf_regs_2425; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); - ini_rfb = rfb_2317; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); - break; - case AR5K_RF2425: - rf_regs = rf_regs_2425; - ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); - if (ah->ah_mac_srev < AR5K_SREV_AR2417) { - ini_rfb = rfb_2425; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); - } else { - ini_rfb = rfb_2417; - ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); - } - break; - default: - return -EINVAL; - } - - /* If it's the first time we set rf buffer, allocate - * ah->ah_rf_banks based on ah->ah_rf_banks_size - * we set above */ - if (ah->ah_rf_banks == NULL) { - ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size); - if (ah->ah_rf_banks == NULL) { - return -ENOMEM; - } - } - - /* Copy values to modify them */ - rfb = ah->ah_rf_banks; - - for (i = 0; i < ah->ah_rf_banks_size; i++) { - if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { - DBG("ath5k: invalid RF register bank\n"); - return -EINVAL; - } - - /* Bank changed, write down the offset */ - if (bank != ini_rfb[i].rfb_bank) { - bank = ini_rfb[i].rfb_bank; - ah->ah_offset[bank] = i; - } - - rfb[i] = ini_rfb[i].rfb_mode_data[mode]; - } - - /* Set Output and Driver bias current (OB/DB) */ - if (channel->hw_value & CHANNEL_2GHZ) { - - if (channel->hw_value & CHANNEL_CCK) - ee_mode = AR5K_EEPROM_MODE_11B; - else - ee_mode = AR5K_EEPROM_MODE_11G; - - /* For RF511X/RF211X combination we - * use b_OB and b_DB parameters stored - * in eeprom on ee->ee_ob[ee_mode][0] - * - * For all other chips we use OB/DB for 2Ghz - * stored in the b/g modal section just like - * 802.11a on ee->ee_ob[ee_mode][1] */ - if ((ah->ah_radio == AR5K_RF5111) || - (ah->ah_radio == AR5K_RF5112)) - obdb = 0; - else - obdb = 1; - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], - AR5K_RF_OB_2GHZ, 1); - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], - AR5K_RF_DB_2GHZ, 1); - - /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ - } else if ((channel->hw_value & CHANNEL_5GHZ) || - (ah->ah_radio == AR5K_RF5111)) { - - /* For 11a, Turbo and XR we need to choose - * OB/DB based on frequency range */ - ee_mode = AR5K_EEPROM_MODE_11A; - obdb = channel->center_freq >= 5725 ? 3 : - (channel->center_freq >= 5500 ? 2 : - (channel->center_freq >= 5260 ? 1 : - (channel->center_freq > 4000 ? 0 : -1))); - - if (obdb < 0) - return -EINVAL; - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], - AR5K_RF_OB_5GHZ, 1); - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], - AR5K_RF_DB_5GHZ, 1); - } - - g_step = &go->go_step[ah->ah_gain.g_step_idx]; - - /* Bank Modifications (chip-specific) */ - if (ah->ah_radio == AR5K_RF5111) { - - /* Set gain_F settings according to current step */ - if (channel->hw_value & CHANNEL_OFDM) { - - AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, - AR5K_PHY_FRAME_CTL_TX_CLIP, - g_step->gos_param[0]); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], - AR5K_RF_PWD_90, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], - AR5K_RF_PWD_84, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], - AR5K_RF_RFGAIN_SEL, 1); - - /* We programmed gain_F parameters, switch back - * to active state */ - ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; - - } - - /* Bank 6/7 setup */ - - ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], - AR5K_RF_PWD_XPD, 1); - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], - AR5K_RF_XPD_GAIN, 1); - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], - AR5K_RF_GAIN_I, 1); - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], - AR5K_RF_PLO_SEL, 1); - - /* TODO: Half/quarter channel support */ - } - - if (ah->ah_radio == AR5K_RF5112) { - - /* Set gain_F settings according to current step */ - if (channel->hw_value & CHANNEL_OFDM) { - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], - AR5K_RF_MIXGAIN_OVR, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], - AR5K_RF_PWD_138, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], - AR5K_RF_PWD_137, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], - AR5K_RF_PWD_136, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], - AR5K_RF_PWD_132, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], - AR5K_RF_PWD_131, 1); - - ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], - AR5K_RF_PWD_130, 1); - - /* We programmed gain_F parameters, switch back - * to active state */ - ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; - } - - /* Bank 6/7 setup */ - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], - AR5K_RF_XPD_SEL, 1); - - if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { - /* Rev. 1 supports only one xpd */ - ath5k_hw_rfb_op(ah, rf_regs, - ee->ee_x_gain[ee_mode], - AR5K_RF_XPD_GAIN, 1); - - } else { - /* TODO: Set high and low gain bits */ - ath5k_hw_rfb_op(ah, rf_regs, - ee->ee_x_gain[ee_mode], - AR5K_RF_PD_GAIN_LO, 1); - ath5k_hw_rfb_op(ah, rf_regs, - ee->ee_x_gain[ee_mode], - AR5K_RF_PD_GAIN_HI, 1); - - /* Lower synth voltage on Rev 2 */ - ath5k_hw_rfb_op(ah, rf_regs, 2, - AR5K_RF_HIGH_VC_CP, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 2, - AR5K_RF_MID_VC_CP, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 2, - AR5K_RF_LOW_VC_CP, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 2, - AR5K_RF_PUSH_UP, 1); - - /* Decrease power consumption on 5213+ BaseBand */ - if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { - ath5k_hw_rfb_op(ah, rf_regs, 1, - AR5K_RF_PAD2GND, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 1, - AR5K_RF_XB2_LVL, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 1, - AR5K_RF_XB5_LVL, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 1, - AR5K_RF_PWD_167, 1); - - ath5k_hw_rfb_op(ah, rf_regs, 1, - AR5K_RF_PWD_166, 1); - } - } - - ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], - AR5K_RF_GAIN_I, 1); - - /* TODO: Half/quarter channel support */ - - } - - if (ah->ah_radio == AR5K_RF5413 && - channel->hw_value & CHANNEL_2GHZ) { - - ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, - 1); - - /* Set optimum value for early revisions (on pci-e chips) */ - if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && - ah->ah_mac_srev < AR5K_SREV_AR5413) - ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), - AR5K_RF_PWD_ICLOBUF_2G, 1); - - } - - /* Write RF banks on hw */ - for (i = 0; i < ah->ah_rf_banks_size; i++) { - AR5K_REG_WAIT(i); - ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); - } - - return 0; -} - - -/**************************\ - PHY/RF channel functions -\**************************/ - -/* - * Check if a channel is supported - */ -int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) -{ - /* Check if the channel is in our supported range */ - if (flags & CHANNEL_2GHZ) { - if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && - (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) - return 1; - } else if (flags & CHANNEL_5GHZ) - if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && - (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) - return 1; - - return 0; -} - -/* - * Convertion needed for RF5110 - */ -static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel) -{ - u32 athchan; - - /* - * Convert IEEE channel/MHz to an internal channel value used - * by the AR5210 chipset. This has not been verified with - * newer chipsets like the AR5212A who have a completely - * different RF/PHY part. - */ - athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq) - - 24) / 2, 5) << 1) - | (1 << 6) | 0x1; - return athchan; -} - -/* - * Set channel on RF5110 - */ -static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - u32 data; - - /* - * Set the channel and wait - */ - data = ath5k_hw_rf5110_chan2athchan(channel); - ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); - ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); - mdelay(1); - - return 0; -} - -/* - * Convertion needed for 5111 - */ -static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, - struct ath5k_athchan_2ghz *athchan) -{ - int channel; - - /* Cast this value to catch negative channel numbers (>= -19) */ - channel = (int)ieee; - - /* - * Map 2GHz IEEE channel to 5GHz Atheros channel - */ - if (channel <= 13) { - athchan->a2_athchan = 115 + channel; - athchan->a2_flags = 0x46; - } else if (channel == 14) { - athchan->a2_athchan = 124; - athchan->a2_flags = 0x44; - } else if (channel >= 15 && channel <= 26) { - athchan->a2_athchan = ((channel - 14) * 4) + 132; - athchan->a2_flags = 0x46; - } else - return -EINVAL; - - return 0; -} - -/* - * Set channel on 5111 - */ -static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - struct ath5k_athchan_2ghz ath5k_channel_2ghz; - unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq); - u32 data0, data1, clock; - int ret; - - /* - * Set the channel on the RF5111 radio - */ - data0 = data1 = 0; - - if (channel->hw_value & CHANNEL_2GHZ) { - /* Map 2GHz channel to 5GHz Atheros channel ID */ - ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel, - &ath5k_channel_2ghz); - if (ret) - return ret; - - ath5k_channel = ath5k_channel_2ghz.a2_athchan; - data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) - << 5) | (1 << 4); - } - - if (ath5k_channel < 145 || !(ath5k_channel & 1)) { - clock = 1; - data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | - (clock << 1) | (1 << 10) | 1; - } else { - clock = 0; - data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) - << 2) | (clock << 1) | (1 << 10) | 1; - } - - ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), - AR5K_RF_BUFFER); - ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), - AR5K_RF_BUFFER_CONTROL_3); - - return 0; -} - -/* - * Set channel on 5112 and newer - */ -static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - u32 data, data0, data1, data2; - u16 c; - - data = data0 = data1 = data2 = 0; - c = channel->center_freq; - - if (c < 4800) { - if (!((c - 2224) % 5)) { - data0 = ((2 * (c - 704)) - 3040) / 10; - data1 = 1; - } else if (!((c - 2192) % 5)) { - data0 = ((2 * (c - 672)) - 3040) / 10; - data1 = 0; - } else - return -EINVAL; - - data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); - } else if ((c - (c % 5)) != 2 || c > 5435) { - if (!(c % 20) && c >= 5120) { - data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); - data2 = ath5k_hw_bitswap(3, 2); - } else if (!(c % 10)) { - data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); - data2 = ath5k_hw_bitswap(2, 2); - } else if (!(c % 5)) { - data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); - data2 = ath5k_hw_bitswap(1, 2); - } else - return -EINVAL; - } else { - data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); - data2 = ath5k_hw_bitswap(0, 2); - } - - data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; - - ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); - ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); - - return 0; -} - -/* - * Set the channel on the RF2425 - */ -static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - u32 data, data0, data2; - u16 c; - - data = data0 = data2 = 0; - c = channel->center_freq; - - if (c < 4800) { - data0 = ath5k_hw_bitswap((c - 2272), 8); - data2 = 0; - /* ? 5GHz ? */ - } else if ((c - (c % 5)) != 2 || c > 5435) { - if (!(c % 20) && c < 5120) - data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); - else if (!(c % 10)) - data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); - else if (!(c % 5)) - data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); - else - return -EINVAL; - data2 = ath5k_hw_bitswap(1, 2); - } else { - data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); - data2 = ath5k_hw_bitswap(0, 2); - } - - data = (data0 << 4) | data2 << 2 | 0x1001; - - ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); - ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); - - return 0; -} - -/* - * Set a channel on the radio chip - */ -int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel) -{ - int ret; - /* - * Check bounds supported by the PHY (we don't care about regultory - * restrictions at this point). Note: hw_value already has the band - * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() - * of the band by that */ - if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { - DBG("ath5k: channel frequency (%d MHz) out of supported " - "range\n", channel->center_freq); - return -EINVAL; - } - - /* - * Set the channel and wait - */ - switch (ah->ah_radio) { - case AR5K_RF5110: - ret = ath5k_hw_rf5110_channel(ah, channel); - break; - case AR5K_RF5111: - ret = ath5k_hw_rf5111_channel(ah, channel); - break; - case AR5K_RF2425: - ret = ath5k_hw_rf2425_channel(ah, channel); - break; - default: - ret = ath5k_hw_rf5112_channel(ah, channel); - break; - } - - if (ret) { - DBG("ath5k: setting channel failed: %s\n", strerror(ret)); - return ret; - } - - /* Set JAPAN setting for channel 14 */ - if (channel->center_freq == 2484) { - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, - AR5K_PHY_CCKTXCTL_JAPAN); - } else { - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, - AR5K_PHY_CCKTXCTL_WORLD); - } - - ah->ah_current_channel = channel; - ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0); - - return 0; -} - -/*****************\ - PHY calibration -\*****************/ - -/** - * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration - * - * @ah: struct ath5k_hw pointer we are operating on - * @freq: the channel frequency, just used for error logging - * - * This function performs a noise floor calibration of the PHY and waits for - * it to complete. Then the noise floor value is compared to some maximum - * noise floor we consider valid. - * - * Note that this is different from what the madwifi HAL does: it reads the - * noise floor and afterwards initiates the calibration. Since the noise floor - * calibration can take some time to finish, depending on the current channel - * use, that avoids the occasional timeout warnings we are seeing now. - * - * See the following link for an Atheros patent on noise floor calibration: - * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ - * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 - * - * XXX: Since during noise floor calibration antennas are detached according to - * the patent, we should stop tx queues here. - */ -int -ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) -{ - int ret; - unsigned int i; - s32 noise_floor; - - /* - * Enable noise floor calibration - */ - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, - AR5K_PHY_AGCCTL_NF); - - ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, - AR5K_PHY_AGCCTL_NF, 0, 0); - - if (ret) { - DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq); - return -EAGAIN; - } - - /* Wait until the noise floor is calibrated and read the value */ - for (i = 20; i > 0; i--) { - mdelay(1); - noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); - noise_floor = AR5K_PHY_NF_RVAL(noise_floor); - if (noise_floor & AR5K_PHY_NF_ACTIVE) { - noise_floor = AR5K_PHY_NF_AVAL(noise_floor); - - if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) - break; - } - } - - DBG2("ath5k: noise floor %d\n", noise_floor); - - if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { - DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq); - return -EAGAIN; - } - - ah->ah_noise_floor = noise_floor; - - return 0; -} - -/* - * Perform a PHY calibration on RF5110 - * -Fix BPSK/QAM Constellation (I/Q correction) - * -Calculate Noise Floor - */ -static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - u32 phy_sig, phy_agc, phy_sat, beacon; - int ret; - - /* - * Disable beacons and RX/TX queues, wait - */ - AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, - AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); - beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); - ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); - - mdelay(2); - - /* - * Set the channel (with AGC turned off) - */ - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); - udelay(10); - ret = ath5k_hw_channel(ah, channel); - - /* - * Activate PHY and wait - */ - ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); - mdelay(1); - - AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); - - if (ret) - return ret; - - /* - * Calibrate the radio chip - */ - - /* Remember normal state */ - phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); - phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); - phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); - - /* Update radio registers */ - ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | - AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); - - ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | - AR5K_PHY_AGCCOARSE_LO)) | - AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | - AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); - - ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | - AR5K_PHY_ADCSAT_THR)) | - AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | - AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); - - udelay(20); - - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); - udelay(10); - ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); - AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); - - mdelay(1); - - /* - * Enable calibration and wait until completion - */ - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); - - ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, - AR5K_PHY_AGCCTL_CAL, 0, 0); - - /* Reset to normal state */ - ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); - ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); - ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); - - if (ret) { - DBG("ath5k: calibration timeout (%d MHz)\n", - channel->center_freq); - return ret; - } - - ath5k_hw_noise_floor_calibration(ah, channel->center_freq); - - /* - * Re-enable RX/TX and beacons - */ - AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, - AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); - ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); - - return 0; -} - -/* - * Perform a PHY calibration on RF5111/5112 and newer chips - */ -static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - u32 i_pwr, q_pwr; - s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; - int i; - - if (!ah->ah_calibration || - ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) - goto done; - - /* Calibration has finished, get the results and re-run */ - for (i = 0; i <= 10; i++) { - iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); - i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); - q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); - } - - i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; - q_coffd = q_pwr >> 7; - - /* No correction */ - if (i_coffd == 0 || q_coffd == 0) - goto done; - - i_coff = ((-iq_corr) / i_coffd) & 0x3f; - - /* Boundary check */ - if (i_coff > 31) - i_coff = 31; - if (i_coff < -32) - i_coff = -32; - - q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; - - /* Boundary check */ - if (q_coff > 15) - q_coff = 15; - if (q_coff < -16) - q_coff = -16; - - /* Commit new I/Q value */ - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | - ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); - - /* Re-enable calibration -if we don't we'll commit - * the same values again and again */ - AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, - AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); - AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); - -done: - - /* TODO: Separate noise floor calibration from I/Q calibration - * since noise floor calibration interrupts rx path while I/Q - * calibration doesn't. We don't need to run noise floor calibration - * as often as I/Q calibration.*/ - ath5k_hw_noise_floor_calibration(ah, channel->center_freq); - - /* Initiate a gain_F calibration */ - ath5k_hw_request_rfgain_probe(ah); - - return 0; -} - -/* - * Perform a PHY calibration - */ -int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - int ret; - - if (ah->ah_radio == AR5K_RF5110) - ret = ath5k_hw_rf5110_calibrate(ah, channel); - else - ret = ath5k_hw_rf511x_calibrate(ah, channel); - - return ret; -} - -int ath5k_hw_phy_disable(struct ath5k_hw *ah) -{ - ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); - - return 0; -} - -/********************\ - Misc PHY functions -\********************/ - -/* - * Get the PHY Chip revision - */ -u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) -{ - unsigned int i; - u32 srev; - u16 ret; - - /* - * Set the radio chip access register - */ - switch (chan) { - case CHANNEL_2GHZ: - ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); - break; - case CHANNEL_5GHZ: - ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); - break; - default: - return 0; - } - - mdelay(2); - - /* ...wait until PHY is ready and read the selected radio revision */ - ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); - - for (i = 0; i < 8; i++) - ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); - - if (ah->ah_version == AR5K_AR5210) { - srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; - ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; - } else { - srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; - ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | - ((srev & 0x0f) << 4), 8); - } - - /* Reset to the 5GHz mode */ - ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); - - return ret; -} - -void /*TODO:Boundary check*/ -ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) -{ - if (ah->ah_version != AR5K_AR5210) - ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); -} - -unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) -{ - if (ah->ah_version != AR5K_AR5210) - return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); - - return 0; /*XXX: What do we return for 5210 ?*/ -} - - -/****************\ -* TX power setup * -\****************/ - -/* - * Helper functions - */ - -/* - * Do linear interpolation between two given (x, y) points - */ -static s16 -ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, - s16 y_left, s16 y_right) -{ - s16 ratio, result; - - /* Avoid divide by zero and skip interpolation - * if we have the same point */ - if ((x_left == x_right) || (y_left == y_right)) - return y_left; - - /* - * Since we use ints and not fps, we need to scale up in - * order to get a sane ratio value (or else we 'll eg. get - * always 1 instead of 1.25, 1.75 etc). We scale up by 100 - * to have some accuracy both for 0.5 and 0.25 steps. - */ - ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); - - /* Now scale down to be in range */ - result = y_left + (ratio * (target - x_left) / 100); - - return result; -} - -/* - * Find vertical boundary (min pwr) for the linear PCDAC curve. - * - * Since we have the top of the curve and we draw the line below - * until we reach 1 (1 pcdac step) we need to know which point - * (x value) that is so that we don't go below y axis and have negative - * pcdac values when creating the curve, or fill the table with zeroes. - */ -static s16 -ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, - const s16 *pwrL, const s16 *pwrR) -{ - s8 tmp; - s16 min_pwrL, min_pwrR; - s16 pwr_i; - - if (pwrL[0] == pwrL[1]) - min_pwrL = pwrL[0]; - else { - pwr_i = pwrL[0]; - do { - pwr_i--; - tmp = (s8) ath5k_get_interpolated_value(pwr_i, - pwrL[0], pwrL[1], - stepL[0], stepL[1]); - } while (tmp > 1); - - min_pwrL = pwr_i; - } - - if (pwrR[0] == pwrR[1]) - min_pwrR = pwrR[0]; - else { - pwr_i = pwrR[0]; - do { - pwr_i--; - tmp = (s8) ath5k_get_interpolated_value(pwr_i, - pwrR[0], pwrR[1], - stepR[0], stepR[1]); - } while (tmp > 1); - - min_pwrR = pwr_i; - } - - /* Keep the right boundary so that it works for both curves */ - return max(min_pwrL, min_pwrR); -} - -/* - * Interpolate (pwr,vpd) points to create a Power to PDADC or a - * Power to PCDAC curve. - * - * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC - * steps (offsets) on y axis. Power can go up to 31.5dB and max - * PCDAC/PDADC step for each curve is 64 but we can write more than - * one curves on hw so we can go up to 128 (which is the max step we - * can write on the final table). - * - * We write y values (PCDAC/PDADC steps) on hw. - */ -static void -ath5k_create_power_curve(s16 pmin, s16 pmax, - const s16 *pwr, const u8 *vpd, - u8 num_points, - u8 *vpd_table, u8 type) -{ - u8 idx[2] = { 0, 1 }; - s16 pwr_i = 2*pmin; - int i; - - if (num_points < 2) - return; - - /* We want the whole line, so adjust boundaries - * to cover the entire power range. Note that - * power values are already 0.25dB so no need - * to multiply pwr_i by 2 */ - if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { - pwr_i = pmin; - pmin = 0; - pmax = 63; - } - - /* Find surrounding turning points (TPs) - * and interpolate between them */ - for (i = 0; (i <= (u16) (pmax - pmin)) && - (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { - - /* We passed the right TP, move to the next set of TPs - * if we pass the last TP, extrapolate above using the last - * two TPs for ratio */ - if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { - idx[0]++; - idx[1]++; - } - - vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, - pwr[idx[0]], pwr[idx[1]], - vpd[idx[0]], vpd[idx[1]]); - - /* Increase by 0.5dB - * (0.25 dB units) */ - pwr_i += 2; - } -} - -/* - * Get the surrounding per-channel power calibration piers - * for a given frequency so that we can interpolate between - * them and come up with an apropriate dataset for our current - * channel. - */ -static void -ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, - struct net80211_channel *channel, - struct ath5k_chan_pcal_info **pcinfo_l, - struct ath5k_chan_pcal_info **pcinfo_r) -{ - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - struct ath5k_chan_pcal_info *pcinfo; - u8 idx_l, idx_r; - u8 mode, max, i; - u32 target = channel->center_freq; - - idx_l = 0; - idx_r = 0; - - if (!(channel->hw_value & CHANNEL_OFDM)) { - pcinfo = ee->ee_pwr_cal_b; - mode = AR5K_EEPROM_MODE_11B; - } else if (channel->hw_value & CHANNEL_2GHZ) { - pcinfo = ee->ee_pwr_cal_g; - mode = AR5K_EEPROM_MODE_11G; - } else { - pcinfo = ee->ee_pwr_cal_a; - mode = AR5K_EEPROM_MODE_11A; - } - max = ee->ee_n_piers[mode] - 1; - - /* Frequency is below our calibrated - * range. Use the lowest power curve - * we have */ - if (target < pcinfo[0].freq) { - idx_l = idx_r = 0; - goto done; - } - - /* Frequency is above our calibrated - * range. Use the highest power curve - * we have */ - if (target > pcinfo[max].freq) { - idx_l = idx_r = max; - goto done; - } - - /* Frequency is inside our calibrated - * channel range. Pick the surrounding - * calibration piers so that we can - * interpolate */ - for (i = 0; i <= max; i++) { - - /* Frequency matches one of our calibration - * piers, no need to interpolate, just use - * that calibration pier */ - if (pcinfo[i].freq == target) { - idx_l = idx_r = i; - goto done; - } - - /* We found a calibration pier that's above - * frequency, use this pier and the previous - * one to interpolate */ - if (target < pcinfo[i].freq) { - idx_r = i; - idx_l = idx_r - 1; - goto done; - } - } - -done: - *pcinfo_l = &pcinfo[idx_l]; - *pcinfo_r = &pcinfo[idx_r]; - - return; -} - -/* - * Get the surrounding per-rate power calibration data - * for a given frequency and interpolate between power - * values to set max target power supported by hw for - * each rate. - */ -static void -ath5k_get_rate_pcal_data(struct ath5k_hw *ah, - struct net80211_channel *channel, - struct ath5k_rate_pcal_info *rates) -{ - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - struct ath5k_rate_pcal_info *rpinfo; - u8 idx_l, idx_r; - u8 mode, max, i; - u32 target = channel->center_freq; - - idx_l = 0; - idx_r = 0; - - if (!(channel->hw_value & CHANNEL_OFDM)) { - rpinfo = ee->ee_rate_tpwr_b; - mode = AR5K_EEPROM_MODE_11B; - } else if (channel->hw_value & CHANNEL_2GHZ) { - rpinfo = ee->ee_rate_tpwr_g; - mode = AR5K_EEPROM_MODE_11G; - } else { - rpinfo = ee->ee_rate_tpwr_a; - mode = AR5K_EEPROM_MODE_11A; - } - max = ee->ee_rate_target_pwr_num[mode] - 1; - - /* Get the surrounding calibration - * piers - same as above */ - if (target < rpinfo[0].freq) { - idx_l = idx_r = 0; - goto done; - } - - if (target > rpinfo[max].freq) { - idx_l = idx_r = max; - goto done; - } - - for (i = 0; i <= max; i++) { - - if (rpinfo[i].freq == target) { - idx_l = idx_r = i; - goto done; - } - - if (target < rpinfo[i].freq) { - idx_r = i; - idx_l = idx_r - 1; - goto done; - } - } - -done: - /* Now interpolate power value, based on the frequency */ - rates->freq = target; - - rates->target_power_6to24 = - ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, - rpinfo[idx_r].freq, - rpinfo[idx_l].target_power_6to24, - rpinfo[idx_r].target_power_6to24); - - rates->target_power_36 = - ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, - rpinfo[idx_r].freq, - rpinfo[idx_l].target_power_36, - rpinfo[idx_r].target_power_36); - - rates->target_power_48 = - ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, - rpinfo[idx_r].freq, - rpinfo[idx_l].target_power_48, - rpinfo[idx_r].target_power_48); - - rates->target_power_54 = - ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, - rpinfo[idx_r].freq, - rpinfo[idx_l].target_power_54, - rpinfo[idx_r].target_power_54); -} - -/* - * Get the max edge power for this channel if - * we have such data from EEPROM's Conformance Test - * Limits (CTL), and limit max power if needed. - * - * FIXME: Only works for world regulatory domains - */ -static void -ath5k_get_max_ctl_power(struct ath5k_hw *ah, - struct net80211_channel *channel) -{ - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - struct ath5k_edge_power *rep = ee->ee_ctl_pwr; - u8 *ctl_val = ee->ee_ctl; - s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; - s16 edge_pwr = 0; - u8 rep_idx; - u8 i, ctl_mode; - u8 ctl_idx = 0xFF; - u32 target = channel->center_freq; - - /* Find out a CTL for our mode that's not mapped - * on a specific reg domain. - * - * TODO: Map our current reg domain to one of the 3 available - * reg domain ids so that we can support more CTLs. */ - switch (channel->hw_value & CHANNEL_MODES) { - case CHANNEL_A: - ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; - break; - case CHANNEL_G: - ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; - break; - case CHANNEL_B: - ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; - break; - case CHANNEL_T: - ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; - break; - case CHANNEL_TG: - ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; - break; - case CHANNEL_XR: - /* Fall through */ - default: - return; - } - - for (i = 0; i < ee->ee_ctls; i++) { - if (ctl_val[i] == ctl_mode) { - ctl_idx = i; - break; - } - } - - /* If we have a CTL dataset available grab it and find the - * edge power for our frequency */ - if (ctl_idx == 0xFF) - return; - - /* Edge powers are sorted by frequency from lower - * to higher. Each CTL corresponds to 8 edge power - * measurements. */ - rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; - - /* Don't do boundaries check because we - * might have more that one bands defined - * for this mode */ - - /* Get the edge power that's closer to our - * frequency */ - for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { - rep_idx += i; - if (target <= rep[rep_idx].freq) - edge_pwr = (s16) rep[rep_idx].edge; - } - - if (edge_pwr) { - ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); - } -} - - -/* - * Power to PCDAC table functions - */ - -/* - * Fill Power to PCDAC table on RF5111 - * - * No further processing is needed for RF5111, the only thing we have to - * do is fill the values below and above calibration range since eeprom data - * may not cover the entire PCDAC table. - */ -static void -ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, - s16 *table_max) -{ - u8 *pcdac_out = ah->ah_txpower.txp_pd_table; - u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; - u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; - s16 min_pwr, max_pwr; - - /* Get table boundaries */ - min_pwr = table_min[0]; - pcdac_0 = pcdac_tmp[0]; - - max_pwr = table_max[0]; - pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; - - /* Extrapolate below minimum using pcdac_0 */ - pcdac_i = 0; - for (i = 0; i < min_pwr; i++) - pcdac_out[pcdac_i++] = pcdac_0; - - /* Copy values from pcdac_tmp */ - pwr_idx = min_pwr; - for (i = 0 ; pwr_idx <= max_pwr && - pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { - pcdac_out[pcdac_i++] = pcdac_tmp[i]; - pwr_idx++; - } - - /* Extrapolate above maximum */ - while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) - pcdac_out[pcdac_i++] = pcdac_n; - -} - -/* - * Combine available XPD Curves and fill Linear Power to PCDAC table - * on RF5112 - * - * RFX112 can have up to 2 curves (one for low txpower range and one for - * higher txpower range). We need to put them both on pcdac_out and place - * them in the correct location. In case we only have one curve available - * just fit it on pcdac_out (it's supposed to cover the entire range of - * available pwr levels since it's always the higher power curve). Extrapolate - * below and above final table if needed. - */ -static void -ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, - s16 *table_max, u8 pdcurves) -{ - u8 *pcdac_out = ah->ah_txpower.txp_pd_table; - u8 *pcdac_low_pwr; - u8 *pcdac_high_pwr; - u8 *pcdac_tmp; - u8 pwr; - s16 max_pwr_idx; - s16 min_pwr_idx; - s16 mid_pwr_idx = 0; - /* Edge flag turs on the 7nth bit on the PCDAC - * to delcare the higher power curve (force values - * to be greater than 64). If we only have one curve - * we don't need to set this, if we have 2 curves and - * fill the table backwards this can also be used to - * switch from higher power curve to lower power curve */ - u8 edge_flag; - int i; - - /* When we have only one curve available - * that's the higher power curve. If we have - * two curves the first is the high power curve - * and the next is the low power curve. */ - if (pdcurves > 1) { - pcdac_low_pwr = ah->ah_txpower.tmpL[1]; - pcdac_high_pwr = ah->ah_txpower.tmpL[0]; - mid_pwr_idx = table_max[1] - table_min[1] - 1; - max_pwr_idx = (table_max[0] - table_min[0]) / 2; - - /* If table size goes beyond 31.5dB, keep the - * upper 31.5dB range when setting tx power. - * Note: 126 = 31.5 dB in quarter dB steps */ - if (table_max[0] - table_min[1] > 126) - min_pwr_idx = table_max[0] - 126; - else - min_pwr_idx = table_min[1]; - - /* Since we fill table backwards - * start from high power curve */ - pcdac_tmp = pcdac_high_pwr; - - edge_flag = 0x40; - } else { - pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ - pcdac_high_pwr = ah->ah_txpower.tmpL[0]; - min_pwr_idx = table_min[0]; - max_pwr_idx = (table_max[0] - table_min[0]) / 2; - pcdac_tmp = pcdac_high_pwr; - edge_flag = 0; - } - - /* This is used when setting tx power*/ - ah->ah_txpower.txp_min_idx = min_pwr_idx/2; - - /* Fill Power to PCDAC table backwards */ - pwr = max_pwr_idx; - for (i = 63; i >= 0; i--) { - /* Entering lower power range, reset - * edge flag and set pcdac_tmp to lower - * power curve.*/ - if (edge_flag == 0x40 && - (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { - edge_flag = 0x00; - pcdac_tmp = pcdac_low_pwr; - pwr = mid_pwr_idx/2; - } - - /* Don't go below 1, extrapolate below if we have - * already swithced to the lower power curve -or - * we only have one curve and edge_flag is zero - * anyway */ - if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { - while (i >= 0) { - pcdac_out[i] = pcdac_out[i + 1]; - i--; - } - break; - } - - pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; - - /* Extrapolate above if pcdac is greater than - * 126 -this can happen because we OR pcdac_out - * value with edge_flag on high power curve */ - if (pcdac_out[i] > 126) - pcdac_out[i] = 126; - - /* Decrease by a 0.5dB step */ - pwr--; - } -} - -/* Write PCDAC values on hw */ -static void -ath5k_setup_pcdac_table(struct ath5k_hw *ah) -{ - u8 *pcdac_out = ah->ah_txpower.txp_pd_table; - int i; - - /* - * Write TX power values - */ - for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { - ath5k_hw_reg_write(ah, - (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | - (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), - AR5K_PHY_PCDAC_TXPOWER(i)); - } -} - - -/* - * Power to PDADC table functions - */ - -/* - * Set the gain boundaries and create final Power to PDADC table - * - * We can have up to 4 pd curves, we need to do a simmilar process - * as we do for RF5112. This time we don't have an edge_flag but we - * set the gain boundaries on a separate register. - */ -static void -ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, - s16 *pwr_min, s16 *pwr_max, u8 pdcurves) -{ - u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; - u8 *pdadc_out = ah->ah_txpower.txp_pd_table; - u8 *pdadc_tmp; - s16 pdadc_0; - u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; - u8 pd_gain_overlap; - - /* Note: Register value is initialized on initvals - * there is no feedback from hw. - * XXX: What about pd_gain_overlap from EEPROM ? */ - pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & - AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; - - /* Create final PDADC table */ - for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { - pdadc_tmp = ah->ah_txpower.tmpL[pdg]; - - if (pdg == pdcurves - 1) - /* 2 dB boundary stretch for last - * (higher power) curve */ - gain_boundaries[pdg] = pwr_max[pdg] + 4; - else - /* Set gain boundary in the middle - * between this curve and the next one */ - gain_boundaries[pdg] = - (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; - - /* Sanity check in case our 2 db stretch got out of - * range. */ - if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) - gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; - - /* For the first curve (lower power) - * start from 0 dB */ - if (pdg == 0) - pdadc_0 = 0; - else - /* For the other curves use the gain overlap */ - pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - - pd_gain_overlap; - - /* Force each power step to be at least 0.5 dB */ - if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) - pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; - else - pwr_step = 1; - - /* If pdadc_0 is negative, we need to extrapolate - * below this pdgain by a number of pwr_steps */ - while ((pdadc_0 < 0) && (pdadc_i < 128)) { - s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; - pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; - pdadc_0++; - } - - /* Set last pwr level, using gain boundaries */ - pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; - /* Limit it to be inside pwr range */ - table_size = pwr_max[pdg] - pwr_min[pdg]; - max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; - - /* Fill pdadc_out table */ - while (pdadc_0 < max_idx) - pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; - - /* Need to extrapolate above this pdgain? */ - if (pdadc_n <= max_idx) - continue; - - /* Force each power step to be at least 0.5 dB */ - if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) - pwr_step = pdadc_tmp[table_size - 1] - - pdadc_tmp[table_size - 2]; - else - pwr_step = 1; - - /* Extrapolate above */ - while ((pdadc_0 < (s16) pdadc_n) && - (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { - s16 tmp = pdadc_tmp[table_size - 1] + - (pdadc_0 - max_idx) * pwr_step; - pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; - pdadc_0++; - } - } - - while (pdg < AR5K_EEPROM_N_PD_GAINS) { - gain_boundaries[pdg] = gain_boundaries[pdg - 1]; - pdg++; - } - - while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { - pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; - pdadc_i++; - } - - /* Set gain boundaries */ - ath5k_hw_reg_write(ah, - AR5K_REG_SM(pd_gain_overlap, - AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | - AR5K_REG_SM(gain_boundaries[0], - AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | - AR5K_REG_SM(gain_boundaries[1], - AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | - AR5K_REG_SM(gain_boundaries[2], - AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | - AR5K_REG_SM(gain_boundaries[3], - AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), - AR5K_PHY_TPC_RG5); - - /* Used for setting rate power table */ - ah->ah_txpower.txp_min_idx = pwr_min[0]; - -} - -/* Write PDADC values on hw */ -static void -ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, - u8 pdcurves, u8 *pdg_to_idx) -{ - u8 *pdadc_out = ah->ah_txpower.txp_pd_table; - u32 reg; - u8 i; - - /* Select the right pdgain curves */ - - /* Clear current settings */ - reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); - reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | - AR5K_PHY_TPC_RG1_PDGAIN_2 | - AR5K_PHY_TPC_RG1_PDGAIN_3 | - AR5K_PHY_TPC_RG1_NUM_PD_GAIN); - - /* - * Use pd_gains curve from eeprom - * - * This overrides the default setting from initvals - * in case some vendors (e.g. Zcomax) don't use the default - * curves. If we don't honor their settings we 'll get a - * 5dB (1 * gain overlap ?) drop. - */ - reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); - - switch (pdcurves) { - case 3: - reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); - /* Fall through */ - case 2: - reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); - /* Fall through */ - case 1: - reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); - break; - } - ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); - - /* - * Write TX power values - */ - for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { - ath5k_hw_reg_write(ah, - ((pdadc_out[4*i + 0] & 0xff) << 0) | - ((pdadc_out[4*i + 1] & 0xff) << 8) | - ((pdadc_out[4*i + 2] & 0xff) << 16) | - ((pdadc_out[4*i + 3] & 0xff) << 24), - AR5K_PHY_PDADC_TXPOWER(i)); - } -} - - -/* - * Common code for PCDAC/PDADC tables - */ - -/* - * This is the main function that uses all of the above - * to set PCDAC/PDADC table on hw for the current channel. - * This table is used for tx power calibration on the basband, - * without it we get weird tx power levels and in some cases - * distorted spectral mask - */ -static int -ath5k_setup_channel_powertable(struct ath5k_hw *ah, - struct net80211_channel *channel, - u8 ee_mode, u8 type) -{ - struct ath5k_pdgain_info *pdg_L, *pdg_R; - struct ath5k_chan_pcal_info *pcinfo_L; - struct ath5k_chan_pcal_info *pcinfo_R; - struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; - s16 table_min[AR5K_EEPROM_N_PD_GAINS]; - s16 table_max[AR5K_EEPROM_N_PD_GAINS]; - u8 *tmpL; - u8 *tmpR; - u32 target = channel->center_freq; - int pdg, i; - - /* Get surounding freq piers for this channel */ - ath5k_get_chan_pcal_surrounding_piers(ah, channel, - &pcinfo_L, - &pcinfo_R); - - /* Loop over pd gain curves on - * surounding freq piers by index */ - for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { - - /* Fill curves in reverse order - * from lower power (max gain) - * to higher power. Use curve -> idx - * backmaping we did on eeprom init */ - u8 idx = pdg_curve_to_idx[pdg]; - - /* Grab the needed curves by index */ - pdg_L = &pcinfo_L->pd_curves[idx]; - pdg_R = &pcinfo_R->pd_curves[idx]; - - /* Initialize the temp tables */ - tmpL = ah->ah_txpower.tmpL[pdg]; - tmpR = ah->ah_txpower.tmpR[pdg]; - - /* Set curve's x boundaries and create - * curves so that they cover the same - * range (if we don't do that one table - * will have values on some range and the - * other one won't have any so interpolation - * will fail) */ - table_min[pdg] = min(pdg_L->pd_pwr[0], - pdg_R->pd_pwr[0]) / 2; - - table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], - pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; - - /* Now create the curves on surrounding channels - * and interpolate if needed to get the final - * curve for this gain on this channel */ - switch (type) { - case AR5K_PWRTABLE_LINEAR_PCDAC: - /* Override min/max so that we don't loose - * accuracy (don't divide by 2) */ - table_min[pdg] = min(pdg_L->pd_pwr[0], - pdg_R->pd_pwr[0]); - - table_max[pdg] = - max(pdg_L->pd_pwr[pdg_L->pd_points - 1], - pdg_R->pd_pwr[pdg_R->pd_points - 1]); - - /* Override minimum so that we don't get - * out of bounds while extrapolating - * below. Don't do this when we have 2 - * curves and we are on the high power curve - * because table_min is ok in this case */ - if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { - - table_min[pdg] = - ath5k_get_linear_pcdac_min(pdg_L->pd_step, - pdg_R->pd_step, - pdg_L->pd_pwr, - pdg_R->pd_pwr); - - /* Don't go too low because we will - * miss the upper part of the curve. - * Note: 126 = 31.5dB (max power supported) - * in 0.25dB units */ - if (table_max[pdg] - table_min[pdg] > 126) - table_min[pdg] = table_max[pdg] - 126; - } - - /* Fall through */ - case AR5K_PWRTABLE_PWR_TO_PCDAC: - case AR5K_PWRTABLE_PWR_TO_PDADC: - - ath5k_create_power_curve(table_min[pdg], - table_max[pdg], - pdg_L->pd_pwr, - pdg_L->pd_step, - pdg_L->pd_points, tmpL, type); - - /* We are in a calibration - * pier, no need to interpolate - * between freq piers */ - if (pcinfo_L == pcinfo_R) - continue; - - ath5k_create_power_curve(table_min[pdg], - table_max[pdg], - pdg_R->pd_pwr, - pdg_R->pd_step, - pdg_R->pd_points, tmpR, type); - break; - default: - return -EINVAL; - } - - /* Interpolate between curves - * of surounding freq piers to - * get the final curve for this - * pd gain. Re-use tmpL for interpolation - * output */ - for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && - (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { - tmpL[i] = (u8) ath5k_get_interpolated_value(target, - (s16) pcinfo_L->freq, - (s16) pcinfo_R->freq, - (s16) tmpL[i], - (s16) tmpR[i]); - } - } - - /* Now we have a set of curves for this - * channel on tmpL (x range is table_max - table_min - * and y values are tmpL[pdg][]) sorted in the same - * order as EEPROM (because we've used the backmaping). - * So for RF5112 it's from higher power to lower power - * and for RF2413 it's from lower power to higher power. - * For RF5111 we only have one curve. */ - - /* Fill min and max power levels for this - * channel by interpolating the values on - * surounding channels to complete the dataset */ - ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, - (s16) pcinfo_L->freq, - (s16) pcinfo_R->freq, - pcinfo_L->min_pwr, pcinfo_R->min_pwr); - - ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, - (s16) pcinfo_L->freq, - (s16) pcinfo_R->freq, - pcinfo_L->max_pwr, pcinfo_R->max_pwr); - - /* We are ready to go, fill PCDAC/PDADC - * table and write settings on hardware */ - switch (type) { - case AR5K_PWRTABLE_LINEAR_PCDAC: - /* For RF5112 we can have one or two curves - * and each curve covers a certain power lvl - * range so we need to do some more processing */ - ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, - ee->ee_pd_gains[ee_mode]); - - /* Set txp.offset so that we can - * match max power value with max - * table index */ - ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); - - /* Write settings on hw */ - ath5k_setup_pcdac_table(ah); - break; - case AR5K_PWRTABLE_PWR_TO_PCDAC: - /* We are done for RF5111 since it has only - * one curve, just fit the curve on the table */ - ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); - - /* No rate powertable adjustment for RF5111 */ - ah->ah_txpower.txp_min_idx = 0; - ah->ah_txpower.txp_offset = 0; - - /* Write settings on hw */ - ath5k_setup_pcdac_table(ah); - break; - case AR5K_PWRTABLE_PWR_TO_PDADC: - /* Set PDADC boundaries and fill - * final PDADC table */ - ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, - ee->ee_pd_gains[ee_mode]); - - /* Write settings on hw */ - ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); - - /* Set txp.offset, note that table_min - * can be negative */ - ah->ah_txpower.txp_offset = table_min[0]; - break; - default: - return -EINVAL; - } - - return 0; -} - - -/* - * Per-rate tx power setting - * - * This is the code that sets the desired tx power (below - * maximum) on hw for each rate (we also have TPC that sets - * power per packet). We do that by providing an index on the - * PCDAC/PDADC table we set up. - */ - -/* - * Set rate power table - * - * For now we only limit txpower based on maximum tx power - * supported by hw (what's inside rate_info). We need to limit - * this even more, based on regulatory domain etc. - * - * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) - * and is indexed as follows: - * rates[0] - rates[7] -> OFDM rates - * rates[8] - rates[14] -> CCK rates - * rates[15] -> XR rates (they all have the same power) - */ -static void -ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, - struct ath5k_rate_pcal_info *rate_info, - u8 ee_mode) -{ - unsigned int i; - u16 *rates; - - /* max_pwr is power level we got from driver/user in 0.5dB - * units, switch to 0.25dB units so we can compare */ - max_pwr *= 2; - max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; - - /* apply rate limits */ - rates = ah->ah_txpower.txp_rates_power_table; - - /* OFDM rates 6 to 24Mb/s */ - for (i = 0; i < 5; i++) - rates[i] = min(max_pwr, rate_info->target_power_6to24); - - /* Rest OFDM rates */ - rates[5] = min(rates[0], rate_info->target_power_36); - rates[6] = min(rates[0], rate_info->target_power_48); - rates[7] = min(rates[0], rate_info->target_power_54); - - /* CCK rates */ - /* 1L */ - rates[8] = min(rates[0], rate_info->target_power_6to24); - /* 2L */ - rates[9] = min(rates[0], rate_info->target_power_36); - /* 2S */ - rates[10] = min(rates[0], rate_info->target_power_36); - /* 5L */ - rates[11] = min(rates[0], rate_info->target_power_48); - /* 5S */ - rates[12] = min(rates[0], rate_info->target_power_48); - /* 11L */ - rates[13] = min(rates[0], rate_info->target_power_54); - /* 11S */ - rates[14] = min(rates[0], rate_info->target_power_54); - - /* XR rates */ - rates[15] = min(rates[0], rate_info->target_power_6to24); - - /* CCK rates have different peak to average ratio - * so we have to tweak their power so that gainf - * correction works ok. For this we use OFDM to - * CCK delta from eeprom */ - if ((ee_mode == AR5K_EEPROM_MODE_11G) && - (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) - for (i = 8; i <= 15; i++) - rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; - - ah->ah_txpower.txp_min_pwr = rates[7]; - ah->ah_txpower.txp_max_pwr = rates[0]; - ah->ah_txpower.txp_ofdm = rates[7]; -} - - -/* - * Set transmition power - */ -int -ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel, - u8 ee_mode, u8 txpower) -{ - struct ath5k_rate_pcal_info rate_info; - u8 type; - int ret; - - if (txpower > AR5K_TUNE_MAX_TXPOWER) { - DBG("ath5k: invalid tx power %d\n", txpower); - return -EINVAL; - } - if (txpower == 0) - txpower = AR5K_TUNE_DEFAULT_TXPOWER; - - /* Reset TX power values */ - memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); - ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; - ah->ah_txpower.txp_min_pwr = 0; - ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; - - /* Initialize TX power table */ - switch (ah->ah_radio) { - case AR5K_RF5111: - type = AR5K_PWRTABLE_PWR_TO_PCDAC; - break; - case AR5K_RF5112: - type = AR5K_PWRTABLE_LINEAR_PCDAC; - break; - case AR5K_RF2413: - case AR5K_RF5413: - case AR5K_RF2316: - case AR5K_RF2317: - case AR5K_RF2425: - type = AR5K_PWRTABLE_PWR_TO_PDADC; - break; - default: - return -EINVAL; - } - - /* FIXME: Only on channel/mode change */ - ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); - if (ret) - return ret; - - /* Limit max power if we have a CTL available */ - ath5k_get_max_ctl_power(ah, channel); - - /* FIXME: Tx power limit for this regdomain - * XXX: Mac80211/CRDA will do that anyway ? */ - - /* FIXME: Antenna reduction stuff */ - - /* FIXME: Limit power on turbo modes */ - - /* FIXME: TPC scale reduction */ - - /* Get surounding channels for per-rate power table - * calibration */ - ath5k_get_rate_pcal_data(ah, channel, &rate_info); - - /* Setup rate power table */ - ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); - - /* Write rate power table on hw */ - ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | - AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | - AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); - - ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | - AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | - AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); - - ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | - AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | - AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); - - ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | - AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | - AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); - - /* FIXME: TPC support */ - if (ah->ah_txpower.txp_tpc) { - ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | - AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); - - ath5k_hw_reg_write(ah, - AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | - AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | - AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), - AR5K_TPC); - } else { - ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | - AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); - } - - return 0; -} - -int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) -{ - struct net80211_channel *channel = ah->ah_current_channel; - - DBG2("ath5k: changing txpower to %d\n", txpower); - - return ath5k_hw_txpower(ah, channel, mode, txpower); -} - -#undef _ATH5K_PHY -- cgit 1.2.3-korg