From bb756eebdac6fd24e8919e2c43f7d2c8c4091f59 Mon Sep 17 00:00:00 2001 From: RajithaY Date: Tue, 25 Apr 2017 03:31:15 -0700 Subject: Adding qemu as a submodule of KVMFORNFV This Patch includes the changes to add qemu as a submodule to kvmfornfv repo and make use of the updated latest qemu for the execution of all testcase Change-Id: I1280af507a857675c7f81d30c95255635667bdd7 Signed-off-by:RajithaY --- qemu/libdecnumber/decNumber.c | 8192 ----------------------------------------- 1 file changed, 8192 deletions(-) delete mode 100644 qemu/libdecnumber/decNumber.c (limited to 'qemu/libdecnumber/decNumber.c') diff --git a/qemu/libdecnumber/decNumber.c b/qemu/libdecnumber/decNumber.c deleted file mode 100644 index c9e7807f8..000000000 --- a/qemu/libdecnumber/decNumber.c +++ /dev/null @@ -1,8192 +0,0 @@ -/* Decimal number arithmetic module for the decNumber C Library. - Copyright (C) 2005, 2007 Free Software Foundation, Inc. - Contributed by IBM Corporation. Author Mike Cowlishaw. - - This file is part of GCC. - - GCC is free software; you can redistribute it and/or modify it under - the terms of the GNU General Public License as published by the Free - Software Foundation; either version 2, or (at your option) any later - version. - - In addition to the permissions in the GNU General Public License, - the Free Software Foundation gives you unlimited permission to link - the compiled version of this file into combinations with other - programs, and to distribute those combinations without any - restriction coming from the use of this file. (The General Public - License restrictions do apply in other respects; for example, they - cover modification of the file, and distribution when not linked - into a combine executable.) - - GCC is distributed in the hope that it will be useful, but WITHOUT ANY - WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - for more details. - - You should have received a copy of the GNU General Public License - along with GCC; see the file COPYING. If not, write to the Free - Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA - 02110-1301, USA. */ - -/* ------------------------------------------------------------------ */ -/* Decimal Number arithmetic module */ -/* ------------------------------------------------------------------ */ -/* This module comprises the routines for General Decimal Arithmetic */ -/* as defined in the specification which may be found on the */ -/* http://www2.hursley.ibm.com/decimal web pages. It implements both */ -/* the full ('extended') arithmetic and the simpler ('subset') */ -/* arithmetic. */ -/* */ -/* Usage notes: */ -/* */ -/* 1. This code is ANSI C89 except: */ -/* */ -/* If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ -/* uint64_t types may be used. To avoid these, set DECUSE64=0 */ -/* and DECDPUN<=4 (see documentation). */ -/* */ -/* 2. The decNumber format which this library uses is optimized for */ -/* efficient processing of relatively short numbers; in particular */ -/* it allows the use of fixed sized structures and minimizes copy */ -/* and move operations. It does, however, support arbitrary */ -/* precision (up to 999,999,999 digits) and arbitrary exponent */ -/* range (Emax in the range 0 through 999,999,999 and Emin in the */ -/* range -999,999,999 through 0). Mathematical functions (for */ -/* example decNumberExp) as identified below are restricted more */ -/* tightly: digits, emax, and -emin in the context must be <= */ -/* DEC_MAX_MATH (999999), and their operand(s) must be within */ -/* these bounds. */ -/* */ -/* 3. Logical functions are further restricted; their operands must */ -/* be finite, positive, have an exponent of zero, and all digits */ -/* must be either 0 or 1. The result will only contain digits */ -/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ -/* */ -/* 4. Operands to operator functions are never modified unless they */ -/* are also specified to be the result number (which is always */ -/* permitted). Other than that case, operands must not overlap. */ -/* */ -/* 5. Error handling: the type of the error is ORed into the status */ -/* flags in the current context (decContext structure). The */ -/* SIGFPE signal is then raised if the corresponding trap-enabler */ -/* flag in the decContext is set (is 1). */ -/* */ -/* It is the responsibility of the caller to clear the status */ -/* flags as required. */ -/* */ -/* The result of any routine which returns a number will always */ -/* be a valid number (which may be a special value, such as an */ -/* Infinity or NaN). */ -/* */ -/* 6. The decNumber format is not an exchangeable concrete */ -/* representation as it comprises fields which may be machine- */ -/* dependent (packed or unpacked, or special length, for example). */ -/* Canonical conversions to and from strings are provided; other */ -/* conversions are available in separate modules. */ -/* */ -/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ -/* to 1 for extended operand checking (including NULL operands). */ -/* Results are undefined if a badly-formed structure (or a NULL */ -/* pointer to a structure) is provided, though with DECCHECK */ -/* enabled the operator routines are protected against exceptions. */ -/* (Except if the result pointer is NULL, which is unrecoverable.) */ -/* */ -/* However, the routines will never cause exceptions if they are */ -/* given well-formed operands, even if the value of the operands */ -/* is inappropriate for the operation and DECCHECK is not set. */ -/* (Except for SIGFPE, as and where documented.) */ -/* */ -/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ -/* ------------------------------------------------------------------ */ -/* Implementation notes for maintenance of this module: */ -/* */ -/* 1. Storage leak protection: Routines which use malloc are not */ -/* permitted to use return for fastpath or error exits (i.e., */ -/* they follow strict structured programming conventions). */ -/* Instead they have a do{}while(0); construct surrounding the */ -/* code which is protected -- break may be used to exit this. */ -/* Other routines can safely use the return statement inline. */ -/* */ -/* Storage leak accounting can be enabled using DECALLOC. */ -/* */ -/* 2. All loops use the for(;;) construct. Any do construct does */ -/* not loop; it is for allocation protection as just described. */ -/* */ -/* 3. Setting status in the context must always be the very last */ -/* action in a routine, as non-0 status may raise a trap and hence */ -/* the call to set status may not return (if the handler uses long */ -/* jump). Therefore all cleanup must be done first. In general, */ -/* to achieve this status is accumulated and is only applied just */ -/* before return by calling decContextSetStatus (via decStatus). */ -/* */ -/* Routines which allocate storage cannot, in general, use the */ -/* 'top level' routines which could cause a non-returning */ -/* transfer of control. The decXxxxOp routines are safe (do not */ -/* call decStatus even if traps are set in the context) and should */ -/* be used instead (they are also a little faster). */ -/* */ -/* 4. Exponent checking is minimized by allowing the exponent to */ -/* grow outside its limits during calculations, provided that */ -/* the decFinalize function is called later. Multiplication and */ -/* division, and intermediate calculations in exponentiation, */ -/* require more careful checks because of the risk of 31-bit */ -/* overflow (the most negative valid exponent is -1999999997, for */ -/* a 999999999-digit number with adjusted exponent of -999999999). */ -/* */ -/* 5. Rounding is deferred until finalization of results, with any */ -/* 'off to the right' data being represented as a single digit */ -/* residue (in the range -1 through 9). This avoids any double- */ -/* rounding when more than one shortening takes place (for */ -/* example, when a result is subnormal). */ -/* */ -/* 6. The digits count is allowed to rise to a multiple of DECDPUN */ -/* during many operations, so whole Units are handled and exact */ -/* accounting of digits is not needed. The correct digits value */ -/* is found by decGetDigits, which accounts for leading zeros. */ -/* This must be called before any rounding if the number of digits */ -/* is not known exactly. */ -/* */ -/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ -/* numbers up to four digits, using appropriate constants. This */ -/* is not useful for longer numbers because overflow of 32 bits */ -/* would lead to 4 multiplies, which is almost as expensive as */ -/* a divide (unless a floating-point or 64-bit multiply is */ -/* assumed to be available). */ -/* */ -/* 8. Unusual abbreviations that may be used in the commentary: */ -/* lhs -- left hand side (operand, of an operation) */ -/* lsd -- least significant digit (of coefficient) */ -/* lsu -- least significant Unit (of coefficient) */ -/* msd -- most significant digit (of coefficient) */ -/* msi -- most significant item (in an array) */ -/* msu -- most significant Unit (of coefficient) */ -/* rhs -- right hand side (operand, of an operation) */ -/* +ve -- positive */ -/* -ve -- negative */ -/* ** -- raise to the power */ -/* ------------------------------------------------------------------ */ - -#include "qemu/osdep.h" -#include "libdecnumber/dconfig.h" -#include "libdecnumber/decNumber.h" -#include "libdecnumber/decNumberLocal.h" - -/* Constants */ -/* Public lookup table used by the D2U macro */ -const uByte d2utable[DECMAXD2U+1]=D2UTABLE; - -#define DECVERB 1 /* set to 1 for verbose DECCHECK */ -#define powers DECPOWERS /* old internal name */ - -/* Local constants */ -#define DIVIDE 0x80 /* Divide operators */ -#define REMAINDER 0x40 /* .. */ -#define DIVIDEINT 0x20 /* .. */ -#define REMNEAR 0x10 /* .. */ -#define COMPARE 0x01 /* Compare operators */ -#define COMPMAX 0x02 /* .. */ -#define COMPMIN 0x03 /* .. */ -#define COMPTOTAL 0x04 /* .. */ -#define COMPNAN 0x05 /* .. [NaN processing] */ -#define COMPSIG 0x06 /* .. [signaling COMPARE] */ -#define COMPMAXMAG 0x07 /* .. */ -#define COMPMINMAG 0x08 /* .. */ - -#define DEC_sNaN 0x40000000 /* local status: sNaN signal */ -#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */ -/* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ -#define BIGEVEN (Int)0x80000002 -#define BIGODD (Int)0x80000003 - -static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */ - -/* Granularity-dependent code */ -#if DECDPUN<=4 - #define eInt Int /* extended integer */ - #define ueInt uInt /* unsigned extended integer */ - /* Constant multipliers for divide-by-power-of five using reciprocal */ - /* multiply, after removing powers of 2 by shifting, and final shift */ - /* of 17 [we only need up to **4] */ - static const uInt multies[]={131073, 26215, 5243, 1049, 210}; - /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ - #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) -#else - /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ - #if !DECUSE64 - #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 - #endif - #define eInt Long /* extended integer */ - #define ueInt uLong /* unsigned extended integer */ -#endif - -/* Local routines */ -static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, - decContext *, uByte, uInt *); -static Flag decBiStr(const char *, const char *, const char *); -static uInt decCheckMath(const decNumber *, decContext *, uInt *); -static void decApplyRound(decNumber *, decContext *, Int, uInt *); -static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag); -static decNumber * decCompareOp(decNumber *, const decNumber *, - const decNumber *, decContext *, - Flag, uInt *); -static void decCopyFit(decNumber *, const decNumber *, decContext *, - Int *, uInt *); -static decNumber * decDecap(decNumber *, Int); -static decNumber * decDivideOp(decNumber *, const decNumber *, - const decNumber *, decContext *, Flag, uInt *); -static decNumber * decExpOp(decNumber *, const decNumber *, - decContext *, uInt *); -static void decFinalize(decNumber *, decContext *, Int *, uInt *); -static Int decGetDigits(Unit *, Int); -static Int decGetInt(const decNumber *); -static decNumber * decLnOp(decNumber *, const decNumber *, - decContext *, uInt *); -static decNumber * decMultiplyOp(decNumber *, const decNumber *, - const decNumber *, decContext *, - uInt *); -static decNumber * decNaNs(decNumber *, const decNumber *, - const decNumber *, decContext *, uInt *); -static decNumber * decQuantizeOp(decNumber *, const decNumber *, - const decNumber *, decContext *, Flag, - uInt *); -static void decReverse(Unit *, Unit *); -static void decSetCoeff(decNumber *, decContext *, const Unit *, - Int, Int *, uInt *); -static void decSetMaxValue(decNumber *, decContext *); -static void decSetOverflow(decNumber *, decContext *, uInt *); -static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *); -static Int decShiftToLeast(Unit *, Int, Int); -static Int decShiftToMost(Unit *, Int, Int); -static void decStatus(decNumber *, uInt, decContext *); -static void decToString(const decNumber *, char[], Flag); -static decNumber * decTrim(decNumber *, decContext *, Flag, Int *); -static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, - Unit *, Int); -static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int); - -#if !DECSUBSET -/* decFinish == decFinalize when no subset arithmetic needed */ -#define decFinish(a,b,c,d) decFinalize(a,b,c,d) -#else -static void decFinish(decNumber *, decContext *, Int *, uInt *); -static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); -#endif - -/* Local macros */ -/* masked special-values bits */ -#define SPECIALARG (rhs->bits & DECSPECIAL) -#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) - -/* Diagnostic macros, etc. */ -#if DECALLOC -/* Handle malloc/free accounting. If enabled, our accountable routines */ -/* are used; otherwise the code just goes straight to the system malloc */ -/* and free routines. */ -#define malloc(a) decMalloc(a) -#define free(a) decFree(a) -#define DECFENCE 0x5a /* corruption detector */ -/* 'Our' malloc and free: */ -static void *decMalloc(size_t); -static void decFree(void *); -uInt decAllocBytes=0; /* count of bytes allocated */ -/* Note that DECALLOC code only checks for storage buffer overflow. */ -/* To check for memory leaks, the decAllocBytes variable must be */ -/* checked to be 0 at appropriate times (e.g., after the test */ -/* harness completes a set of tests). This checking may be unreliable */ -/* if the testing is done in a multi-thread environment. */ -#endif - -#if DECCHECK -/* Optional checking routines. Enabling these means that decNumber */ -/* and decContext operands to operator routines are checked for */ -/* correctness. This roughly doubles the execution time of the */ -/* fastest routines (and adds 600+ bytes), so should not normally be */ -/* used in 'production'. */ -/* decCheckInexact is used to check that inexact results have a full */ -/* complement of digits (where appropriate -- this is not the case */ -/* for Quantize, for example) */ -#define DECUNRESU ((decNumber *)(void *)0xffffffff) -#define DECUNUSED ((const decNumber *)(void *)0xffffffff) -#define DECUNCONT ((decContext *)(void *)(0xffffffff)) -static Flag decCheckOperands(decNumber *, const decNumber *, - const decNumber *, decContext *); -static Flag decCheckNumber(const decNumber *); -static void decCheckInexact(const decNumber *, decContext *); -#endif - -#if DECTRACE || DECCHECK -/* Optional trace/debugging routines (may or may not be used) */ -void decNumberShow(const decNumber *); /* displays the components of a number */ -static void decDumpAr(char, const Unit *, Int); -#endif - -/* ================================================================== */ -/* Conversions */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* from-int32 -- conversion from Int or uInt */ -/* */ -/* dn is the decNumber to receive the integer */ -/* in or uin is the integer to be converted */ -/* returns dn */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFromInt32(decNumber *dn, Int in) { - uInt unsig; - if (in>=0) unsig=in; - else { /* negative (possibly BADINT) */ - if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */ - else unsig=-in; /* invert */ - } - /* in is now positive */ - decNumberFromUInt32(dn, unsig); - if (in<0) dn->bits=DECNEG; /* sign needed */ - return dn; - } /* decNumberFromInt32 */ - -decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) { - Unit *up; /* work pointer */ - decNumberZero(dn); /* clean */ - if (uin==0) return dn; /* [or decGetDigits bad call] */ - for (up=dn->lsu; uin>0; up++) { - *up=(Unit)(uin%(DECDPUNMAX+1)); - uin=uin/(DECDPUNMAX+1); - } - dn->digits=decGetDigits(dn->lsu, up-dn->lsu); - return dn; - } /* decNumberFromUInt32 */ - -/* ------------------------------------------------------------------ */ -/* to-int32 -- conversion to Int or uInt */ -/* */ -/* dn is the decNumber to convert */ -/* set is the context for reporting errors */ -/* returns the converted decNumber, or 0 if Invalid is set */ -/* */ -/* Invalid is set if the decNumber does not have exponent==0 or if */ -/* it is a NaN, Infinite, or out-of-range. */ -/* ------------------------------------------------------------------ */ -Int decNumberToInt32(const decNumber *dn, decContext *set) { - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - - /* special or too many digits, or bad exponent */ - if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */ - else { /* is a finite integer with 10 or fewer digits */ - Int d; /* work */ - const Unit *up; /* .. */ - uInt hi=0, lo; /* .. */ - up=dn->lsu; /* -> lsu */ - lo=*up; /* get 1 to 9 digits */ - #if DECDPUN>1 /* split to higher */ - hi=lo/10; - lo=lo%10; - #endif - up++; - /* collect remaining Units, if any, into hi */ - for (d=DECDPUN; ddigits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; - /* now low has the lsd, hi the remainder */ - if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ - /* most-negative is a reprieve */ - if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; - /* bad -- drop through */ - } - else { /* in-range always */ - Int i=X10(hi)+lo; - if (dn->bits&DECNEG) return -i; - return i; - } - } /* integer */ - decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ - return 0; - } /* decNumberToInt32 */ - -uInt decNumberToUInt32(const decNumber *dn, decContext *set) { - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - /* special or too many digits, or bad exponent, or negative (<0) */ - if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 - || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */ - else { /* is a finite integer with 10 or fewer digits */ - Int d; /* work */ - const Unit *up; /* .. */ - uInt hi=0, lo; /* .. */ - up=dn->lsu; /* -> lsu */ - lo=*up; /* get 1 to 9 digits */ - #if DECDPUN>1 /* split to higher */ - hi=lo/10; - lo=lo%10; - #endif - up++; - /* collect remaining Units, if any, into hi */ - for (d=DECDPUN; ddigits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; - - /* now low has the lsd, hi the remainder */ - if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ - else return X10(hi)+lo; - } /* integer */ - decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ - return 0; - } /* decNumberToUInt32 */ - -decNumber *decNumberFromInt64(decNumber *dn, int64_t in) -{ - uint64_t unsig = in; - if (in < 0) { - unsig = -unsig; - } - - decNumberFromUInt64(dn, unsig); - if (in < 0) { - dn->bits = DECNEG; /* sign needed */ - } - return dn; -} /* decNumberFromInt64 */ - -decNumber *decNumberFromUInt64(decNumber *dn, uint64_t uin) -{ - Unit *up; /* work pointer */ - decNumberZero(dn); /* clean */ - if (uin == 0) { - return dn; /* [or decGetDigits bad call] */ - } - for (up = dn->lsu; uin > 0; up++) { - *up = (Unit)(uin % (DECDPUNMAX + 1)); - uin = uin / (DECDPUNMAX + 1); - } - dn->digits = decGetDigits(dn->lsu, up-dn->lsu); - return dn; -} /* decNumberFromUInt64 */ - -/* ------------------------------------------------------------------ */ -/* to-int64 -- conversion to int64 */ -/* */ -/* dn is the decNumber to convert. dn is assumed to have been */ -/* rounded to a floating point integer value. */ -/* set is the context for reporting errors */ -/* returns the converted decNumber, or 0 if Invalid is set */ -/* */ -/* Invalid is set if the decNumber is a NaN, Infinite or is out of */ -/* range for a signed 64 bit integer. */ -/* ------------------------------------------------------------------ */ - -int64_t decNumberIntegralToInt64(const decNumber *dn, decContext *set) -{ - if (decNumberIsSpecial(dn) || (dn->exponent < 0) || - (dn->digits + dn->exponent > 19)) { - goto Invalid; - } else { - int64_t d; /* work */ - const Unit *up; /* .. */ - uint64_t hi = 0; - up = dn->lsu; /* -> lsu */ - - for (d = 1; d <= dn->digits; up++, d += DECDPUN) { - uint64_t prev = hi; - hi += *up * powers[d-1]; - if ((hi < prev) || (hi > INT64_MAX)) { - goto Invalid; - } - } - - uint64_t prev = hi; - hi *= (uint64_t)powers[dn->exponent]; - if ((hi < prev) || (hi > INT64_MAX)) { - goto Invalid; - } - return (decNumberIsNegative(dn)) ? -((int64_t)hi) : (int64_t)hi; - } - -Invalid: - decContextSetStatus(set, DEC_Invalid_operation); - return 0; -} /* decNumberIntegralToInt64 */ - - -/* ------------------------------------------------------------------ */ -/* to-scientific-string -- conversion to numeric string */ -/* to-engineering-string -- conversion to numeric string */ -/* */ -/* decNumberToString(dn, string); */ -/* decNumberToEngString(dn, string); */ -/* */ -/* dn is the decNumber to convert */ -/* string is the string where the result will be laid out */ -/* */ -/* string must be at least dn->digits+14 characters long */ -/* */ -/* No error is possible, and no status can be set. */ -/* ------------------------------------------------------------------ */ -char * decNumberToString(const decNumber *dn, char *string){ - decToString(dn, string, 0); - return string; - } /* DecNumberToString */ - -char * decNumberToEngString(const decNumber *dn, char *string){ - decToString(dn, string, 1); - return string; - } /* DecNumberToEngString */ - -/* ------------------------------------------------------------------ */ -/* to-number -- conversion from numeric string */ -/* */ -/* decNumberFromString -- convert string to decNumber */ -/* dn -- the number structure to fill */ -/* chars[] -- the string to convert ('\0' terminated) */ -/* set -- the context used for processing any error, */ -/* determining the maximum precision available */ -/* (set.digits), determining the maximum and minimum */ -/* exponent (set.emax and set.emin), determining if */ -/* extended values are allowed, and checking the */ -/* rounding mode if overflow occurs or rounding is */ -/* needed. */ -/* */ -/* The length of the coefficient and the size of the exponent are */ -/* checked by this routine, so the correct error (Underflow or */ -/* Overflow) can be reported or rounding applied, as necessary. */ -/* */ -/* If bad syntax is detected, the result will be a quiet NaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFromString(decNumber *dn, const char chars[], - decContext *set) { - Int exponent=0; /* working exponent [assume 0] */ - uByte bits=0; /* working flags [assume +ve] */ - Unit *res; /* where result will be built */ - Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */ - /* [+9 allows for ln() constants] */ - Unit *allocres=NULL; /* -> allocated result, iff allocated */ - Int d=0; /* count of digits found in decimal part */ - const char *dotchar=NULL; /* where dot was found */ - const char *cfirst=chars; /* -> first character of decimal part */ - const char *last=NULL; /* -> last digit of decimal part */ - const char *c; /* work */ - Unit *up; /* .. */ - #if DECDPUN>1 - Int cut, out; /* .. */ - #endif - Int residue; /* rounding residue */ - uInt status=0; /* error code */ - - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) - return decNumberZero(dn); - #endif - - do { /* status & malloc protection */ - for (c=chars;; c++) { /* -> input character */ - if (*c>='0' && *c<='9') { /* test for Arabic digit */ - last=c; - d++; /* count of real digits */ - continue; /* still in decimal part */ - } - if (*c=='.' && dotchar==NULL) { /* first '.' */ - dotchar=c; /* record offset into decimal part */ - if (c==cfirst) cfirst++; /* first digit must follow */ - continue;} - if (c==chars) { /* first in string... */ - if (*c=='-') { /* valid - sign */ - cfirst++; - bits=DECNEG; - continue;} - if (*c=='+') { /* valid + sign */ - cfirst++; - continue;} - } - /* *c is not a digit, or a valid +, -, or '.' */ - break; - } /* c */ - - if (last==NULL) { /* no digits yet */ - status=DEC_Conversion_syntax;/* assume the worst */ - if (*c=='\0') break; /* and no more to come... */ - #if DECSUBSET - /* if subset then infinities and NaNs are not allowed */ - if (!set->extended) break; /* hopeless */ - #endif - /* Infinities and NaNs are possible, here */ - if (dotchar!=NULL) break; /* .. unless had a dot */ - decNumberZero(dn); /* be optimistic */ - if (decBiStr(c, "infinity", "INFINITY") - || decBiStr(c, "inf", "INF")) { - dn->bits=bits | DECINF; - status=0; /* is OK */ - break; /* all done */ - } - /* a NaN expected */ - /* 2003.09.10 NaNs are now permitted to have a sign */ - dn->bits=bits | DECNAN; /* assume simple NaN */ - if (*c=='s' || *c=='S') { /* looks like an sNaN */ - c++; - dn->bits=bits | DECSNAN; - } - if (*c!='n' && *c!='N') break; /* check caseless "NaN" */ - c++; - if (*c!='a' && *c!='A') break; /* .. */ - c++; - if (*c!='n' && *c!='N') break; /* .. */ - c++; - /* now either nothing, or nnnn payload, expected */ - /* -> start of integer and skip leading 0s [including plain 0] */ - for (cfirst=c; *cfirst=='0';) cfirst++; - if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */ - status=0; /* it's good */ - break; /* .. */ - } - /* something other than 0s; setup last and d as usual [no dots] */ - for (c=cfirst;; c++, d++) { - if (*c<'0' || *c>'9') break; /* test for Arabic digit */ - last=c; - } - if (*c!='\0') break; /* not all digits */ - if (d>set->digits-1) { - /* [NB: payload in a decNumber can be full length unless */ - /* clamped, in which case can only be digits-1] */ - if (set->clamp) break; - if (d>set->digits) break; - } /* too many digits? */ - /* good; drop through to convert the integer to coefficient */ - status=0; /* syntax is OK */ - bits=dn->bits; /* for copy-back */ - } /* last==NULL */ - - else if (*c!='\0') { /* more to process... */ - /* had some digits; exponent is only valid sequence now */ - Flag nege; /* 1=negative exponent */ - const char *firstexp; /* -> first significant exponent digit */ - status=DEC_Conversion_syntax;/* assume the worst */ - if (*c!='e' && *c!='E') break; - /* Found 'e' or 'E' -- now process explicit exponent */ - /* 1998.07.11: sign no longer required */ - nege=0; - c++; /* to (possible) sign */ - if (*c=='-') {nege=1; c++;} - else if (*c=='+') c++; - if (*c=='\0') break; - - for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */ - firstexp=c; /* save exponent digit place */ - for (; ;c++) { - if (*c<'0' || *c>'9') break; /* not a digit */ - exponent=X10(exponent)+(Int)*c-(Int)'0'; - } /* c */ - /* if not now on a '\0', *c must not be a digit */ - if (*c!='\0') break; - - /* (this next test must be after the syntax checks) */ - /* if it was too long the exponent may have wrapped, so check */ - /* carefully and set it to a certain overflow if wrap possible */ - if (c>=firstexp+9+1) { - if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; - /* [up to 1999999999 is OK, for example 1E-1000000998] */ - } - if (nege) exponent=-exponent; /* was negative */ - status=0; /* is OK */ - } /* stuff after digits */ - - /* Here when whole string has been inspected; syntax is good */ - /* cfirst->first digit (never dot), last->last digit (ditto) */ - - /* strip leading zeros/dot [leave final 0 if all 0's] */ - if (*cfirst=='0') { /* [cfirst has stepped over .] */ - for (c=cfirst; cextended) { - decNumberZero(dn); /* clean result */ - break; /* [could be return] */ - } - #endif - } /* at least one leading 0 */ - - /* Handle decimal point... */ - if (dotchar!=NULL && dotchardigits) res=dn->lsu; /* fits into supplied decNumber */ - else { /* rounding needed */ - Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */ - res=resbuff; /* assume use local buffer */ - if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */ - allocres=(Unit *)malloc(needbytes); - if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} - res=allocres; - } - } - /* res now -> number lsu, buffer, or allocated storage for Unit array */ - - /* Place the coefficient into the selected Unit array */ - /* [this is often 70% of the cost of this function when DECDPUN>1] */ - #if DECDPUN>1 - out=0; /* accumulator */ - up=res+D2U(d)-1; /* -> msu */ - cut=d-(up-res)*DECDPUN; /* digits in top unit */ - for (c=cfirst;; c++) { /* along the digits */ - if (*c=='.') continue; /* ignore '.' [don't decrement cut] */ - out=X10(out)+(Int)*c-(Int)'0'; - if (c==last) break; /* done [never get to trailing '.'] */ - cut--; - if (cut>0) continue; /* more for this unit */ - *up=(Unit)out; /* write unit */ - up--; /* prepare for unit below.. */ - cut=DECDPUN; /* .. */ - out=0; /* .. */ - } /* c */ - *up=(Unit)out; /* write lsu */ - - #else - /* DECDPUN==1 */ - up=res; /* -> lsu */ - for (c=last; c>=cfirst; c--) { /* over each character, from least */ - if (*c=='.') continue; /* ignore . [don't step up] */ - *up=(Unit)((Int)*c-(Int)'0'); - up++; - } /* c */ - #endif - - dn->bits=bits; - dn->exponent=exponent; - dn->digits=d; - - /* if not in number (too long) shorten into the number */ - if (d>set->digits) { - residue=0; - decSetCoeff(dn, set, res, d, &residue, &status); - /* always check for overflow or subnormal and round as needed */ - decFinalize(dn, set, &residue, &status); - } - else { /* no rounding, but may still have overflow or subnormal */ - /* [these tests are just for performance; finalize repeats them] */ - if ((dn->exponent-1emin-dn->digits) - || (dn->exponent-1>set->emax-set->digits)) { - residue=0; - decFinalize(dn, set, &residue, &status); - } - } - /* decNumberShow(dn); */ - } while(0); /* [for break] */ - - if (allocres!=NULL) free(allocres); /* drop any storage used */ - if (status!=0) decStatus(dn, status, set); - return dn; - } /* decNumberFromString */ - -/* ================================================================== */ -/* Operators */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decNumberAbs -- absolute value operator */ -/* */ -/* This computes C = abs(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopyAbs for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This has the same effect as decNumberPlus unless A is negative, */ -/* in which case it has the same effect as decNumberMinus. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; /* for 0 */ - uInt status=0; /* accumulator */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); /* set 0 */ - dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ - decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberAbs */ - -/* ------------------------------------------------------------------ */ -/* decNumberAdd -- add two Numbers */ -/* */ -/* This computes C = A + B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This just calls the routine shared with Subtract */ -decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decAddOp(res, lhs, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberAdd */ - -/* ------------------------------------------------------------------ */ -/* decNumberAnd -- AND two Numbers, digitwise */ -/* */ -/* This computes C = A & B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X&X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; /* -> operands */ - const Unit *msua, *msub; /* -> operand msus */ - Unit *uc, *msuc; /* -> result and its msu */ - Int msudigs; /* digits in res msu */ - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - - /* operands are valid */ - ua=lhs->lsu; /* bottom-up */ - ub=rhs->lsu; /* .. */ - uc=res->lsu; /* .. */ - msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ - msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ - msuc=uc+D2U(set->digits)-1; /* -> msu of result */ - msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ - for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ - Unit a, b; /* extract units */ - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; /* can now write back */ - if (a|b) { /* maybe 1 bits to examine */ - Int i, j; - *uc=0; /* can now write back */ - /* This loop could be unrolled and/or use BIN2BCD tables */ - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; /* just did final digit */ - } /* each digit */ - } /* both OK */ - } /* each unit */ - /* [here uc-1 is the msu of the result] */ - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; /* integer */ - res->bits=0; /* sign=0 */ - return res; /* [no status to set] */ - } /* decNumberAnd */ - -/* ------------------------------------------------------------------ */ -/* decNumberCompare -- compare two Numbers */ -/* */ -/* This computes C = A ? B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit (or NaN). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPARE, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberCompare */ - -/* ------------------------------------------------------------------ */ -/* decNumberCompareSignal -- compare, signalling on all NaNs */ -/* */ -/* This computes C = A ? B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit (or NaN). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPSIG, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberCompareSignal */ - -/* ------------------------------------------------------------------ */ -/* decNumberCompareTotal -- compare two Numbers, using total ordering */ -/* */ -/* This computes C = A ? B, under total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit; the result will always be one of */ -/* -1, 0, or 1. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberCompareTotal */ - -/* ------------------------------------------------------------------ */ -/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ -/* */ -/* This computes C = |A| ? |B|, under total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for one digit; the result will always be one of */ -/* -1, 0, or 1. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - uInt needbytes; /* for space calculations */ - decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */ - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber bufb[D2N(DECBUFFER+1)]; - decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ - decNumber *a, *b; /* temporary pointers */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - /* if either is negative, take a copy and absolute */ - if (decNumberIsNegative(lhs)) { /* lhs<0 */ - a=bufa; - needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { /* need malloc space */ - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; /* use the allocated space */ - } - decNumberCopy(a, lhs); /* copy content */ - a->bits&=~DECNEG; /* .. and clear the sign */ - lhs=a; /* use copy from here on */ - } - if (decNumberIsNegative(rhs)) { /* rhs<0 */ - b=bufb; - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { /* need malloc space */ - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - b=allocbufb; /* use the allocated space */ - } - decNumberCopy(b, rhs); /* copy content */ - b->bits&=~DECNEG; /* .. and clear the sign */ - rhs=b; /* use copy from here on */ - } - decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); - } while(0); /* end protected */ - - if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ - if (allocbufb!=NULL) free(allocbufb); /* .. */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberCompareTotalMag */ - -/* ------------------------------------------------------------------ */ -/* decNumberDivide -- divide one number by another */ -/* */ -/* This computes C = A / B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X/X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decDivideOp(res, lhs, rhs, set, DIVIDE, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberDivide */ - -/* ------------------------------------------------------------------ */ -/* decNumberDivideInteger -- divide and return integer quotient */ -/* */ -/* This computes C = A # B, where # is the integer divide operator */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X#X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberDivideInteger */ - -/* ------------------------------------------------------------------ */ -/* decNumberExp -- exponentiation */ -/* */ -/* This computes C = exp(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* Finite results will always be full precision and Inexact, except */ -/* when A is a zero or -Infinity (giving 1 or 0 respectively). */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This is a wrapper for decExpOp which can handle the slightly wider */ -/* (double) range needed by Ln (which has to be able to calculate */ -/* exp(-a) where a can be the tiniest number (Ntiny). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberExp(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; /* accumulator */ - #if DECSUBSET - decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ - #endif - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* Check restrictions; these restrictions ensure that if h=8 (see */ - /* decExpOp) then the result will either overflow or underflow to 0. */ - /* Other math functions restrict the input range, too, for inverses. */ - /* If not violated then carry out the operation. */ - if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ - #if DECSUBSET - if (!set->extended) { - /* reduce operand and set lostDigits status, as needed */ - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - decExpOp(res, rhs, set, &status); - } while(0); /* end protected */ - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ - #endif - /* apply significant status */ - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberExp */ - -/* ------------------------------------------------------------------ */ -/* decNumberFMA -- fused multiply add */ -/* */ -/* This computes D = (A * B) + C with only one rounding */ -/* */ -/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ -/* lhs is A */ -/* rhs is B */ -/* fhs is C [far hand side] */ -/* set is the context */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, - const decNumber *rhs, const decNumber *fhs, - decContext *set) { - uInt status=0; /* accumulator */ - decContext dcmul; /* context for the multiplication */ - uInt needbytes; /* for space calculations */ - decNumber bufa[D2N(DECBUFFER*2+1)]; - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber *acc; /* accumulator pointer */ - decNumber dzero; /* work */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { /* [undefined if subset] */ - status|=DEC_Invalid_operation; - break;} - #endif - /* Check math restrictions [these ensure no overflow or underflow] */ - if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) - || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) - || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; - /* set up context for multiply */ - dcmul=*set; - dcmul.digits=lhs->digits+rhs->digits; /* just enough */ - /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ - dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */ - dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */ - /* set up decNumber space to receive the result of the multiply */ - acc=bufa; /* may fit */ - needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { /* need malloc space */ - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - acc=allocbufa; /* use the allocated space */ - } - /* multiply with extended range and necessary precision */ - /*printf("emin=%ld\n", dcmul.emin); */ - decMultiplyOp(acc, lhs, rhs, &dcmul, &status); - /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ - /* status; if either is seen than ignore fhs (in case it is */ - /* another sNaN) and set acc to NaN unless we had an sNaN */ - /* [decMultiplyOp leaves that to caller] */ - /* Note sNaN has to go through addOp to shorten payload if */ - /* necessary */ - if ((status&DEC_Invalid_operation)!=0) { - if (!(status&DEC_sNaN)) { /* but be true invalid */ - decNumberZero(res); /* acc not yet set */ - res->bits=DECNAN; - break; - } - decNumberZero(&dzero); /* make 0 (any non-NaN would do) */ - fhs=&dzero; /* use that */ - } - #if DECCHECK - else { /* multiply was OK */ - if (status!=0) printf("Status=%08lx after FMA multiply\n", status); - } - #endif - /* add the third operand and result -> res, and all is done */ - decAddOp(res, acc, fhs, set, 0, &status); - } while(0); /* end protected */ - - if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberFMA */ - -/* ------------------------------------------------------------------ */ -/* decNumberInvert -- invert a Number, digitwise */ -/* */ -/* This computes C = ~A */ -/* */ -/* res is C, the result. C may be A (e.g., X=~X) */ -/* rhs is A */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, - decContext *set) { - const Unit *ua, *msua; /* -> operand and its msu */ - Unit *uc, *msuc; /* -> result and its msu */ - Int msudigs; /* digits in res msu */ - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - /* operand is valid */ - ua=rhs->lsu; /* bottom-up */ - uc=res->lsu; /* .. */ - msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */ - msuc=uc+D2U(set->digits)-1; /* -> msu of result */ - msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ - for (; uc<=msuc; ua++, uc++) { /* Unit loop */ - Unit a; /* extract unit */ - Int i, j; /* work */ - if (ua>msua) a=0; - else a=*ua; - *uc=0; /* can now write back */ - /* always need to examine all bits in rhs */ - /* This loop could be unrolled and/or use BIN2BCD tables */ - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; /* just did final digit */ - } /* each digit */ - } /* each unit */ - /* [here uc-1 is the msu of the result] */ - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; /* integer */ - res->bits=0; /* sign=0 */ - return res; /* [no status to set] */ - } /* decNumberInvert */ - -/* ------------------------------------------------------------------ */ -/* decNumberLn -- natural logarithm */ -/* */ -/* This computes C = ln(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This is a wrapper for decLnOp which can handle the slightly wider */ -/* (+11) range needed by Ln, Log10, etc. (which may have to be able */ -/* to calculate at p+e+2). */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLn(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; /* accumulator */ - #if DECSUBSET - decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ - #endif - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* Check restrictions; this is a math function; if not violated */ - /* then carry out the operation. */ - if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ - #if DECSUBSET - if (!set->extended) { - /* reduce operand and set lostDigits status, as needed */ - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - /* special check in subset for rhs=0 */ - if (ISZERO(rhs)) { /* +/- zeros -> error */ - status|=DEC_Invalid_operation; - break;} - } /* extended=0 */ - #endif - decLnOp(res, rhs, set, &status); - } while(0); /* end protected */ - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ - #endif - /* apply significant status */ - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberLn */ - -/* ------------------------------------------------------------------ */ -/* decNumberLogB - get adjusted exponent, by 754r rules */ -/* */ -/* This computes C = adjustedexponent(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context, used only for digits and status */ -/* */ -/* C must have space for 10 digits (A might have 10**9 digits and */ -/* an exponent of +999999999, or one digit and an exponent of */ -/* -1999999999). */ -/* */ -/* This returns the adjusted exponent of A after (in theory) padding */ -/* with zeros on the right to set->digits digits while keeping the */ -/* same value. The exponent is not limited by emin/emax. */ -/* */ -/* Notable cases: */ -/* A<0 -> Use |A| */ -/* A=0 -> -Infinity (Division by zero) */ -/* A=Infinite -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* NaNs are propagated as usual */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0; /* accumulator */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* NaNs as usual; Infinities return +Infinity; 0->oops */ - if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); - else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs); - else if (decNumberIsZero(rhs)) { - decNumberZero(res); /* prepare for Infinity */ - res->bits=DECNEG|DECINF; /* -Infinity */ - status|=DEC_Division_by_zero; /* as per 754r */ - } - else { /* finite non-zero */ - Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ - decNumberFromInt32(res, ae); /* lay it out */ - } - - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberLogB */ - -/* ------------------------------------------------------------------ */ -/* decNumberLog10 -- logarithm in base 10 */ -/* */ -/* This computes C = log10(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=10**n (if n is an integer) -> n (Exact) */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* This calculates ln(A)/ln(10) using appropriate precision. For */ -/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ -/* requested digits and t is the number of digits in the exponent */ -/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ -/* fastpath in decLnOp. The final division is done to the requested */ -/* precision. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, - decContext *set) { - uInt status=0, ignore=0; /* status accumulators */ - uInt needbytes; /* for space calculations */ - Int p; /* working precision */ - Int t; /* digits in exponent of A */ - - /* buffers for a and b working decimals */ - /* (adjustment calculator, same size) */ - decNumber bufa[D2N(DECBUFFER+2)]; - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber *a=bufa; /* temporary a */ - decNumber bufb[D2N(DECBUFFER+2)]; - decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ - decNumber *b=bufb; /* temporary b */ - decNumber bufw[D2N(10)]; /* working 2-10 digit number */ - decNumber *w=bufw; /* .. */ - #if DECSUBSET - decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ - #endif - - decContext aset; /* working context */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* Check restrictions; this is a math function; if not violated */ - /* then carry out the operation. */ - if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ - #if DECSUBSET - if (!set->extended) { - /* reduce operand and set lostDigits status, as needed */ - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - /* special check in subset for rhs=0 */ - if (ISZERO(rhs)) { /* +/- zeros -> error */ - status|=DEC_Invalid_operation; - break;} - } /* extended=0 */ - #endif - - decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ - - /* handle exact powers of 10; only check if +ve finite */ - if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { - Int residue=0; /* (no residue) */ - uInt copystat=0; /* clean status */ - - /* round to a single digit... */ - aset.digits=1; - decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ - /* if exact and the digit is 1, rhs is a power of 10 */ - if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { - /* the exponent, conveniently, is the power of 10; making */ - /* this the result needs a little care as it might not fit, */ - /* so first convert it into the working number, and then move */ - /* to res */ - decNumberFromInt32(w, w->exponent); - residue=0; - decCopyFit(res, w, set, &residue, &status); /* copy & round */ - decFinish(res, set, &residue, &status); /* cleanup/set flags */ - break; - } /* not a power of 10 */ - } /* not a candidate for exact */ - - /* simplify the information-content calculation to use 'total */ - /* number of digits in a, including exponent' as compared to the */ - /* requested digits, as increasing this will only rarely cost an */ - /* iteration in ln(a) anyway */ - t=6; /* it can never be >6 */ - - /* allocate space when needed... */ - p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; - needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { /* need malloc space */ - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; /* use the allocated space */ - } - aset.digits=p; /* as calculated */ - aset.emax=DEC_MAX_MATH; /* usual bounds */ - aset.emin=-DEC_MAX_MATH; /* .. */ - aset.clamp=0; /* and no concrete format */ - decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */ - - /* skip the division if the result so far is infinite, NaN, or */ - /* zero, or there was an error; note NaN from sNaN needs copy */ - if (status&DEC_NaNs && !(status&DEC_sNaN)) break; - if (a->bits&DECSPECIAL || ISZERO(a)) { - decNumberCopy(res, a); /* [will fit] */ - break;} - - /* for ln(10) an extra 3 digits of precision are needed */ - p=set->digits+3; - needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { /* need malloc space */ - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - b=allocbufb; /* use the allocated space */ - } - decNumberZero(w); /* set up 10... */ - #if DECDPUN==1 - w->lsu[1]=1; w->lsu[0]=0; /* .. */ - #else - w->lsu[0]=10; /* .. */ - #endif - w->digits=2; /* .. */ - - aset.digits=p; - decLnOp(b, w, &aset, &ignore); /* b=ln(10) */ - - aset.digits=set->digits; /* for final divide */ - decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */ - } while(0); /* [for break] */ - - if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ - if (allocbufb!=NULL) free(allocbufb); /* .. */ - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); /* .. */ - #endif - /* apply significant status */ - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberLog10 */ - -/* ------------------------------------------------------------------ */ -/* decNumberMax -- compare two Numbers and return the maximum */ -/* */ -/* This computes C = A ? B, returning the maximum by 754R rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMax(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPMAX, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMax */ - -/* ------------------------------------------------------------------ */ -/* decNumberMaxMag -- compare and return the maximum by magnitude */ -/* */ -/* This computes C = A ? B, returning the maximum by 754R rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMaxMag */ - -/* ------------------------------------------------------------------ */ -/* decNumberMin -- compare two Numbers and return the minimum */ -/* */ -/* This computes C = A ? B, returning the minimum by 754R rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMin(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPMIN, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMin */ - -/* ------------------------------------------------------------------ */ -/* decNumberMinMag -- compare and return the minimum by magnitude */ -/* */ -/* This computes C = A ? B, returning the minimum by 754R rules */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMinMag */ - -/* ------------------------------------------------------------------ */ -/* decNumberMinus -- prefix minus operator */ -/* */ -/* This computes C = 0 - A */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopyNegate for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* Simply use AddOp for the subtract, which will do the necessary. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; - uInt status=0; /* accumulator */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); /* make 0 */ - dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ - decAddOp(res, &dzero, rhs, set, DECNEG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMinus */ - -/* ------------------------------------------------------------------ */ -/* decNumberNextMinus -- next towards -Infinity */ -/* */ -/* This computes C = A - infinitesimal, rounded towards -Infinity */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* This is a generalization of 754r NextDown. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dtiny; /* constant */ - decContext workset=*set; /* work */ - uInt status=0; /* accumulator */ - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* +Infinity is the special case */ - if ((rhs->bits&(DECINF|DECNEG))==DECINF) { - decSetMaxValue(res, set); /* is +ve */ - /* there is no status to set */ - return res; - } - decNumberZero(&dtiny); /* start with 0 */ - dtiny.lsu[0]=1; /* make number that is .. */ - dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ - workset.round=DEC_ROUND_FLOOR; - decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); - status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberNextMinus */ - -/* ------------------------------------------------------------------ */ -/* decNumberNextPlus -- next towards +Infinity */ -/* */ -/* This computes C = A + infinitesimal, rounded towards +Infinity */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* This is a generalization of 754r NextUp. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dtiny; /* constant */ - decContext workset=*set; /* work */ - uInt status=0; /* accumulator */ - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* -Infinity is the special case */ - if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { - decSetMaxValue(res, set); - res->bits=DECNEG; /* negative */ - /* there is no status to set */ - return res; - } - decNumberZero(&dtiny); /* start with 0 */ - dtiny.lsu[0]=1; /* make number that is .. */ - dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ - workset.round=DEC_ROUND_CEILING; - decAddOp(res, rhs, &dtiny, &workset, 0, &status); - status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberNextPlus */ - -/* ------------------------------------------------------------------ */ -/* decNumberNextToward -- next towards rhs */ -/* */ -/* This computes C = A +/- infinitesimal, rounded towards */ -/* +/-Infinity in the direction of B, as per 754r nextafter rules */ -/* */ -/* res is C, the result. C may be A or B. */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* This is a generalization of 754r NextAfter. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - decNumber dtiny; /* constant */ - decContext workset=*set; /* work */ - Int result; /* .. */ - uInt status=0; /* accumulator */ - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { - decNaNs(res, lhs, rhs, set, &status); - } - else { /* Is numeric, so no chance of sNaN Invalid, etc. */ - result=decCompare(lhs, rhs, 0); /* sign matters */ - if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */ - else { /* valid compare */ - if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */ - else { /* differ: need NextPlus or NextMinus */ - uByte sub; /* add or subtract */ - if (result<0) { /* lhsbits&(DECINF|DECNEG))==(DECINF|DECNEG)) { - decSetMaxValue(res, set); - res->bits=DECNEG; /* negative */ - return res; /* there is no status to set */ - } - workset.round=DEC_ROUND_CEILING; - sub=0; /* add, please */ - } /* plus */ - else { /* lhs>rhs, do nextminus */ - /* +Infinity is the special case */ - if ((lhs->bits&(DECINF|DECNEG))==DECINF) { - decSetMaxValue(res, set); - return res; /* there is no status to set */ - } - workset.round=DEC_ROUND_FLOOR; - sub=DECNEG; /* subtract, please */ - } /* minus */ - decNumberZero(&dtiny); /* start with 0 */ - dtiny.lsu[0]=1; /* make number that is .. */ - dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ - decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ - /* turn off exceptions if the result is a normal number */ - /* (including Nmin), otherwise let all status through */ - if (decNumberIsNormal(res, set)) status=0; - } /* unequal */ - } /* compare OK */ - } /* numeric */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberNextToward */ - -/* ------------------------------------------------------------------ */ -/* decNumberOr -- OR two Numbers, digitwise */ -/* */ -/* This computes C = A | B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X|X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberOr(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; /* -> operands */ - const Unit *msua, *msub; /* -> operand msus */ - Unit *uc, *msuc; /* -> result and its msu */ - Int msudigs; /* digits in res msu */ - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - /* operands are valid */ - ua=lhs->lsu; /* bottom-up */ - ub=rhs->lsu; /* .. */ - uc=res->lsu; /* .. */ - msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ - msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ - msuc=uc+D2U(set->digits)-1; /* -> msu of result */ - msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ - for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ - Unit a, b; /* extract units */ - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; /* can now write back */ - if (a|b) { /* maybe 1 bits to examine */ - Int i, j; - /* This loop could be unrolled and/or use BIN2BCD tables */ - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; /* just did final digit */ - } /* each digit */ - } /* non-zero */ - } /* each unit */ - /* [here uc-1 is the msu of the result] */ - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; /* integer */ - res->bits=0; /* sign=0 */ - return res; /* [no status to set] */ - } /* decNumberOr */ - -/* ------------------------------------------------------------------ */ -/* decNumberPlus -- prefix plus operator */ -/* */ -/* This computes C = 0 + A */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* See also decNumberCopy for a quiet bitwise version of this. */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This simply uses AddOp; Add will take fast path after preparing A. */ -/* Performance is a concern here, as this routine is often used to */ -/* check operands and apply rounding and overflow/underflow testing. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dzero; - uInt status=0; /* accumulator */ - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - decNumberZero(&dzero); /* make 0 */ - dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ - decAddOp(res, &dzero, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberPlus */ - -/* ------------------------------------------------------------------ */ -/* decNumberMultiply -- multiply two Numbers */ -/* */ -/* This computes C = A x B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decMultiplyOp(res, lhs, rhs, set, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberMultiply */ - -/* ------------------------------------------------------------------ */ -/* decNumberPower -- raise a number to a power */ -/* */ -/* This computes C = A ** B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X**X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Mathematical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* */ -/* However, if 1999999997<=B<=999999999 and B is an integer then the */ -/* restrictions on A and the context are relaxed to the usual bounds, */ -/* for compatibility with the earlier (integer power only) version */ -/* of this function. */ -/* */ -/* When B is an integer, the result may be exact, even if rounded. */ -/* */ -/* The final result is rounded according to the context; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberPower(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - #if DECSUBSET - decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ - decNumber *allocrhs=NULL; /* .., rhs */ - #endif - decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */ - decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */ - Int reqdigits=set->digits; /* requested DIGITS */ - Int n; /* rhs in binary */ - Flag rhsint=0; /* 1 if rhs is an integer */ - Flag useint=0; /* 1 if can use integer calculation */ - Flag isoddint=0; /* 1 if rhs is an integer and odd */ - Int i; /* work */ - #if DECSUBSET - Int dropped; /* .. */ - #endif - uInt needbytes; /* buffer size needed */ - Flag seenbit; /* seen a bit while powering */ - Int residue=0; /* rounding residue */ - uInt status=0; /* accumulators */ - uByte bits=0; /* result sign if errors */ - decContext aset; /* working context */ - decNumber dnOne; /* work value 1... */ - /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ - decNumber dacbuff[D2N(DECBUFFER+9)]; - decNumber *dac=dacbuff; /* -> result accumulator */ - /* same again for possible 1/lhs calculation */ - decNumber invbuff[D2N(DECBUFFER+9)]; - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { /* reduce operands and set status, as needed */ - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, &status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* handle NaNs and rhs Infinity (lhs infinity is harder) */ - if (SPECIALARGS) { - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */ - decNaNs(res, lhs, rhs, set, &status); - break;} - if (decNumberIsInfinite(rhs)) { /* rhs Infinity */ - Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */ - if (decNumberIsNegative(lhs) /* lhs<0 */ - && !decNumberIsZero(lhs)) /* .. */ - status|=DEC_Invalid_operation; - else { /* lhs >=0 */ - decNumberZero(&dnOne); /* set up 1 */ - dnOne.lsu[0]=1; - decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */ - decNumberZero(res); /* prepare for 0/1/Infinity */ - if (decNumberIsNegative(dac)) { /* lhs<1 */ - if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ - } - else if (dac->lsu[0]==0) { /* lhs=1 */ - /* 1**Infinity is inexact, so return fully-padded 1.0000 */ - Int shift=set->digits-1; - *res->lsu=1; /* was 0, make int 1 */ - res->digits=decShiftToMost(res->lsu, 1, shift); - res->exponent=-shift; /* make 1.0000... */ - status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ - } - else { /* lhs>1 */ - if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ - } - } /* lhs>=0 */ - break;} - /* [lhs infinity drops through] */ - } /* specials */ - - /* Original rhs may be an integer that fits and is in range */ - n=decGetInt(rhs); - if (n!=BADINT) { /* it is an integer */ - rhsint=1; /* record the fact for 1**n */ - isoddint=(Flag)n&1; /* [works even if big] */ - if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */ - useint=1; /* looks good */ - } - - if (decNumberIsNegative(lhs) /* -x .. */ - && isoddint) bits=DECNEG; /* .. to an odd power */ - - /* handle LHS infinity */ - if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */ - uByte rbits=rhs->bits; /* save */ - decNumberZero(res); /* prepare */ - if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */ - else { - /* -Inf**nonint -> error */ - if (!rhsint && decNumberIsNegative(lhs)) { - status|=DEC_Invalid_operation; /* -Inf**nonint is error */ - break;} - if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */ - /* [otherwise will be 0 or -0] */ - res->bits=bits; - } - break;} - - /* similarly handle LHS zero */ - if (decNumberIsZero(lhs)) { - if (n==0) { /* 0**0 => Error */ - #if DECSUBSET - if (!set->extended) { /* [unless subset] */ - decNumberZero(res); - *res->lsu=1; /* return 1 */ - break;} - #endif - status|=DEC_Invalid_operation; - } - else { /* 0**x */ - uByte rbits=rhs->bits; /* save */ - if (rbits & DECNEG) { /* was a 0**(-n) */ - #if DECSUBSET - if (!set->extended) { /* [bad if subset] */ - status|=DEC_Invalid_operation; - break;} - #endif - bits|=DECINF; - } - decNumberZero(res); /* prepare */ - /* [otherwise will be 0 or -0] */ - res->bits=bits; - } - break;} - - /* here both lhs and rhs are finite; rhs==0 is handled in the */ - /* integer path. Next handle the non-integer cases */ - if (!useint) { /* non-integral rhs */ - /* any -ve lhs is bad, as is either operand or context out of */ - /* bounds */ - if (decNumberIsNegative(lhs)) { - status|=DEC_Invalid_operation; - break;} - if (decCheckMath(lhs, set, &status) - || decCheckMath(rhs, set, &status)) break; /* variable status */ - - decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ - aset.emax=DEC_MAX_MATH; /* usual bounds */ - aset.emin=-DEC_MAX_MATH; /* .. */ - aset.clamp=0; /* and no concrete format */ - - /* calculate the result using exp(ln(lhs)*rhs), which can */ - /* all be done into the accumulator, dac. The precision needed */ - /* is enough to contain the full information in the lhs (which */ - /* is the total digits, including exponent), or the requested */ - /* precision, if larger, + 4; 6 is used for the exponent */ - /* maximum length, and this is also used when it is shorter */ - /* than the requested digits as it greatly reduces the >0.5 ulp */ - /* cases at little cost (because Ln doubles digits each */ - /* iteration so a few extra digits rarely causes an extra */ - /* iteration) */ - aset.digits=MAXI(lhs->digits, set->digits)+6+4; - } /* non-integer rhs */ - - else { /* rhs is in-range integer */ - if (n==0) { /* x**0 = 1 */ - /* (0**0 was handled above) */ - decNumberZero(res); /* result=1 */ - *res->lsu=1; /* .. */ - break;} - /* rhs is a non-zero integer */ - if (n<0) n=-n; /* use abs(n) */ - - aset=*set; /* clone the context */ - aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */ - /* calculate the working DIGITS */ - aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; - #if DECSUBSET - if (!set->extended) aset.digits--; /* use classic precision */ - #endif - /* it's an error if this is more than can be handled */ - if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} - } /* integer path */ - - /* aset.digits is the count of digits for the accumulator needed */ - /* if accumulator is too long for local storage, then allocate */ - needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); - /* [needbytes also used below if 1/lhs needed] */ - if (needbytes>sizeof(dacbuff)) { - allocdac=(decNumber *)malloc(needbytes); - if (allocdac==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - dac=allocdac; /* use the allocated space */ - } - /* here, aset is set up and accumulator is ready for use */ - - if (!useint) { /* non-integral rhs */ - /* x ** y; special-case x=1 here as it will otherwise always */ - /* reduce to integer 1; decLnOp has a fastpath which detects */ - /* the case of x=1 */ - decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */ - /* [no error possible, as lhs 0 already handled] */ - if (ISZERO(dac)) { /* x==1, 1.0, etc. */ - /* need to return fully-padded 1.0000 etc., but rhsint->1 */ - *dac->lsu=1; /* was 0, make int 1 */ - if (!rhsint) { /* add padding */ - Int shift=set->digits-1; - dac->digits=decShiftToMost(dac->lsu, 1, shift); - dac->exponent=-shift; /* make 1.0000... */ - status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ - } - } - else { - decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */ - decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */ - } - /* and drop through for final rounding */ - } /* non-integer rhs */ - - else { /* carry on with integer */ - decNumberZero(dac); /* acc=1 */ - *dac->lsu=1; /* .. */ - - /* if a negative power the constant 1 is needed, and if not subset */ - /* invert the lhs now rather than inverting the result later */ - if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ - decNumber *inv=invbuff; /* assume use fixed buffer */ - decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */ - #if DECSUBSET - if (set->extended) { /* need to calculate 1/lhs */ - #endif - /* divide lhs into 1, putting result in dac [dac=1/dac] */ - decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); - /* now locate or allocate space for the inverted lhs */ - if (needbytes>sizeof(invbuff)) { - allocinv=(decNumber *)malloc(needbytes); - if (allocinv==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - inv=allocinv; /* use the allocated space */ - } - /* [inv now points to big-enough buffer or allocated storage] */ - decNumberCopy(inv, dac); /* copy the 1/lhs */ - decNumberCopy(dac, &dnOne); /* restore acc=1 */ - lhs=inv; /* .. and go forward with new lhs */ - #if DECSUBSET - } - #endif - } - - /* Raise-to-the-power loop... */ - seenbit=0; /* set once a 1-bit is encountered */ - for (i=1;;i++){ /* for each bit [top bit ignored] */ - /* abandon if had overflow or terminal underflow */ - if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ - if (status&DEC_Overflow || ISZERO(dac)) break; - } - /* [the following two lines revealed an optimizer bug in a C++ */ - /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ - n=n<<1; /* move next bit to testable position */ - if (n<0) { /* top bit is set */ - seenbit=1; /* OK, significant bit seen */ - decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ - } - if (i==31) break; /* that was the last bit */ - if (!seenbit) continue; /* no need to square 1 */ - decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ - } /*i*/ /* 32 bits */ - - /* complete internal overflow or underflow processing */ - if (status & (DEC_Overflow|DEC_Underflow)) { - #if DECSUBSET - /* If subset, and power was negative, reverse the kind of -erflow */ - /* [1/x not yet done] */ - if (!set->extended && decNumberIsNegative(rhs)) { - if (status & DEC_Overflow) - status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; - else { /* trickier -- Underflow may or may not be set */ - status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */ - status|=DEC_Overflow; - } - } - #endif - dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */ - /* round subnormals [to set.digits rather than aset.digits] */ - /* or set overflow result similarly as required */ - decFinalize(dac, set, &residue, &status); - decNumberCopy(res, dac); /* copy to result (is now OK length) */ - break; - } - - #if DECSUBSET - if (!set->extended && /* subset math */ - decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ - /* so divide result into 1 [dac=1/dac] */ - decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); - } - #endif - } /* rhs integer path */ - - /* reduce result to the requested length and copy to result */ - decCopyFit(res, dac, set, &residue, &status); - decFinish(res, set, &residue, &status); /* final cleanup */ - #if DECSUBSET - if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */ - #endif - } while(0); /* end protected */ - - if (allocdac!=NULL) free(allocdac); /* drop any storage used */ - if (allocinv!=NULL) free(allocinv); /* .. */ - #if DECSUBSET - if (alloclhs!=NULL) free(alloclhs); /* .. */ - if (allocrhs!=NULL) free(allocrhs); /* .. */ - #endif - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberPower */ - -/* ------------------------------------------------------------------ */ -/* decNumberQuantize -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has exponent of B. The numerical value of C will equal A, */ -/* except for the effects of any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the number with exponent to match */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be equal to that of B. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decQuantizeOp(res, lhs, rhs, set, 1, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberQuantize */ - -/* ------------------------------------------------------------------ */ -/* decNumberReduce -- remove trailing zeros */ -/* */ -/* This computes C = 0 + A, and normalizes the result */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* Previously known as Normalize */ -decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, - decContext *set) { - return decNumberReduce(res, rhs, set); - } /* decNumberNormalize */ - -decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, - decContext *set) { - #if DECSUBSET - decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ - #endif - uInt status=0; /* as usual */ - Int residue=0; /* as usual */ - Int dropped; /* work */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operand and set lostDigits status, as needed */ - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* Infinities copy through; NaNs need usual treatment */ - if (decNumberIsNaN(rhs)) { - decNaNs(res, rhs, NULL, set, &status); - break; - } - - /* reduce result to the requested length and copy to result */ - decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ - decFinish(res, set, &residue, &status); /* cleanup/set flags */ - decTrim(res, set, 1, &dropped); /* normalize in place */ - } while(0); /* end protected */ - - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); /* .. */ - #endif - if (status!=0) decStatus(res, status, set);/* then report status */ - return res; - } /* decNumberReduce */ - -/* ------------------------------------------------------------------ */ -/* decNumberRescale -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has the value B. The numerical value of C will equal A, */ -/* except for the effects of any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested exponent */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be equal to B. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decQuantizeOp(res, lhs, rhs, set, 0, &status); - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberRescale */ - -/* ------------------------------------------------------------------ */ -/* decNumberRemainder -- divide and return remainder */ -/* */ -/* This computes C = A % B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X%X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decDivideOp(res, lhs, rhs, set, REMAINDER, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberRemainder */ - -/* ------------------------------------------------------------------ */ -/* decNumberRemainderNear -- divide and return remainder from nearest */ -/* */ -/* This computes C = A % B, where % is the IEEE remainder operator */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X%X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - decDivideOp(res, lhs, rhs, set, REMNEAR, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberRemainderNear */ - -/* ------------------------------------------------------------------ */ -/* decNumberRotate -- rotate the coefficient of a Number left/right */ -/* */ -/* This computes C = A rot B (in base ten and rotating set->digits */ -/* digits). */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ -/* lhs is A */ -/* rhs is B, the number of digits to rotate (-ve to right) */ -/* set is the context */ -/* */ -/* The digits of the coefficient of A are rotated to the left (if B */ -/* is positive) or to the right (if B is negative) without adjusting */ -/* the exponent or the sign of A. If lhs->digits is less than */ -/* set->digits the coefficient is padded with zeros on the left */ -/* before the rotate. Any leading zeros in the result are removed */ -/* as usual. */ -/* */ -/* B must be an integer (q=0) and in the range -set->digits through */ -/* +set->digits. */ -/* C must have space for set->digits digits. */ -/* NaNs are propagated as usual. Infinities are unaffected (but */ -/* B must be valid). No status is set unless B is invalid or an */ -/* operand is an sNaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - Int rotate; /* rhs as an Int */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - /* NaNs propagate as normal */ - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - /* rhs must be an integer */ - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { /* both numeric, rhs is an integer */ - rotate=decGetInt(rhs); /* [cannot fail] */ - if (rotate==BADINT /* something bad .. */ - || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */ - || abs(rotate)>set->digits) /* .. or out of range */ - status=DEC_Invalid_operation; - else { /* rhs is OK */ - decNumberCopy(res, lhs); - /* convert -ve rotate to equivalent positive rotation */ - if (rotate<0) rotate=set->digits+rotate; - if (rotate!=0 && rotate!=set->digits /* zero or full rotation */ - && !decNumberIsInfinite(res)) { /* lhs was infinite */ - /* left-rotate to do; 0 < rotate < set->digits */ - uInt units, shift; /* work */ - uInt msudigits; /* digits in result msu */ - Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */ - Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */ - for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */ - res->digits=set->digits; /* now full-length */ - msudigits=MSUDIGITS(res->digits); /* actual digits in msu */ - - /* rotation here is done in-place, in three steps */ - /* 1. shift all to least up to one unit to unit-align final */ - /* lsd [any digits shifted out are rotated to the left, */ - /* abutted to the original msd (which may require split)] */ - /* */ - /* [if there are no whole units left to rotate, the */ - /* rotation is now complete] */ - /* */ - /* 2. shift to least, from below the split point only, so that */ - /* the final msd is in the right place in its Unit [any */ - /* digits shifted out will fit exactly in the current msu, */ - /* left aligned, no split required] */ - /* */ - /* 3. rotate all the units by reversing left part, right */ - /* part, and then whole */ - /* */ - /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ - /* */ - /* start: 00a bcd efg hij klm npq */ - /* */ - /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */ - /* 1b 00p qab cde fgh|ijk lmn */ - /* */ - /* 2a 00p qab cde fgh|00i jkl [mn saved] */ - /* 2b mnp qab cde fgh|00i jkl */ - /* */ - /* 3a fgh cde qab mnp|00i jkl */ - /* 3b fgh cde qab mnp|jkl 00i */ - /* 3c 00i jkl mnp qab cde fgh */ - - /* Step 1: amount to shift is the partial right-rotate count */ - rotate=set->digits-rotate; /* make it right-rotate */ - units=rotate/DECDPUN; /* whole units to rotate */ - shift=rotate%DECDPUN; /* left-over digits count */ - if (shift>0) { /* not an exact number of units */ - uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ - decShiftToLeast(res->lsu, D2U(res->digits), shift); - if (shift>msudigits) { /* msumax-1 needs >0 digits */ - uInt rem=save%powers[shift-msudigits];/* split save */ - *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */ - *(msumax-1)=*(msumax-1) - +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */ - } - else { /* all fits in msumax */ - *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */ - } - } /* digits shift needed */ - - /* If whole units to rotate... */ - if (units>0) { /* some to do */ - /* Step 2: the units to touch are the whole ones in rotate, */ - /* if any, and the shift is DECDPUN-msudigits (which may be */ - /* 0, again) */ - shift=DECDPUN-msudigits; - if (shift>0) { /* not an exact number of units */ - uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ - decShiftToLeast(res->lsu, units, shift); - *msumax=*msumax+(Unit)(save*powers[msudigits]); - } /* partial shift needed */ - - /* Step 3: rotate the units array using triple reverse */ - /* (reversing is easy and fast) */ - decReverse(res->lsu+units, msumax); /* left part */ - decReverse(res->lsu, res->lsu+units-1); /* right part */ - decReverse(res->lsu, msumax); /* whole */ - } /* whole units to rotate */ - /* the rotation may have left an undetermined number of zeros */ - /* on the left, so true length needs to be calculated */ - res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); - } /* rotate needed */ - } /* rhs OK */ - } /* numerics */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberRotate */ - -/* ------------------------------------------------------------------ */ -/* decNumberSameQuantum -- test for equal exponents */ -/* */ -/* res is the result number, which will contain either 0 or 1 */ -/* lhs is a number to test */ -/* rhs is the second (usually a pattern) */ -/* */ -/* No errors are possible and no context is needed. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, - const decNumber *rhs) { - Unit ret=0; /* return value */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; - #endif - - if (SPECIALARGS) { - if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; - else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; - /* [anything else with a special gives 0] */ - } - else if (lhs->exponent==rhs->exponent) ret=1; - - decNumberZero(res); /* OK to overwrite an operand now */ - *res->lsu=ret; - return res; - } /* decNumberSameQuantum */ - -/* ------------------------------------------------------------------ */ -/* decNumberScaleB -- multiply by a power of 10 */ -/* */ -/* This computes C = A x 10**B where B is an integer (q=0) with */ -/* maximum magnitude 2*(emax+digits) */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested power of ten to use */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* The result may underflow or overflow. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - Int reqexp; /* requested exponent change [B] */ - uInt status=0; /* accumulator */ - Int residue; /* work */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - /* Handle special values except lhs infinite */ - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - /* rhs must be an integer */ - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { - /* lhs is a number; rhs is a finite with q==0 */ - reqexp=decGetInt(rhs); /* [cannot fail] */ - if (reqexp==BADINT /* something bad .. */ - || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */ - || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ - status=DEC_Invalid_operation; - else { /* rhs is OK */ - decNumberCopy(res, lhs); /* all done if infinite lhs */ - if (!decNumberIsInfinite(res)) { /* prepare to scale */ - res->exponent+=reqexp; /* adjust the exponent */ - residue=0; - decFinalize(res, set, &residue, &status); /* .. and check */ - } /* finite LHS */ - } /* rhs OK */ - } /* rhs finite */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberScaleB */ - -/* ------------------------------------------------------------------ */ -/* decNumberShift -- shift the coefficient of a Number left or right */ -/* */ -/* This computes C = A << B or C = A >> -B (in base ten). */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X<digits through */ -/* +set->digits. */ -/* C must have space for set->digits digits. */ -/* NaNs are propagated as usual. Infinities are unaffected (but */ -/* B must be valid). No status is set unless B is invalid or an */ -/* operand is an sNaN. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberShift(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - Int shift; /* rhs as an Int */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - /* NaNs propagate as normal */ - if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) - decNaNs(res, lhs, rhs, set, &status); - /* rhs must be an integer */ - else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) - status=DEC_Invalid_operation; - else { /* both numeric, rhs is an integer */ - shift=decGetInt(rhs); /* [cannot fail] */ - if (shift==BADINT /* something bad .. */ - || shift==BIGODD || shift==BIGEVEN /* .. very big .. */ - || abs(shift)>set->digits) /* .. or out of range */ - status=DEC_Invalid_operation; - else { /* rhs is OK */ - decNumberCopy(res, lhs); - if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */ - if (shift>0) { /* to left */ - if (shift==set->digits) { /* removing all */ - *res->lsu=0; /* so place 0 */ - res->digits=1; /* .. */ - } - else { /* */ - /* first remove leading digits if necessary */ - if (res->digits+shift>set->digits) { - decDecap(res, res->digits+shift-set->digits); - /* that updated res->digits; may have gone to 1 (for a */ - /* single digit or for zero */ - } - if (res->digits>1 || *res->lsu) /* if non-zero.. */ - res->digits=decShiftToMost(res->lsu, res->digits, shift); - } /* partial left */ - } /* left */ - else { /* to right */ - if (-shift>=res->digits) { /* discarding all */ - *res->lsu=0; /* so place 0 */ - res->digits=1; /* .. */ - } - else { - decShiftToLeast(res->lsu, D2U(res->digits), -shift); - res->digits-=(-shift); - } - } /* to right */ - } /* non-0 non-Inf shift */ - } /* rhs OK */ - } /* numerics */ - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberShift */ - -/* ------------------------------------------------------------------ */ -/* decNumberSquareRoot -- square root operator */ -/* */ -/* This computes C = squareroot(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -/* This uses the following varying-precision algorithm in: */ -/* */ -/* Properly Rounded Variable Precision Square Root, T. E. Hull and */ -/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ -/* pp229-237, ACM, September 1985. */ -/* */ -/* The square-root is calculated using Newton's method, after which */ -/* a check is made to ensure the result is correctly rounded. */ -/* */ -/* % [Reformatted original Numerical Turing source code follows.] */ -/* function sqrt(x : real) : real */ -/* % sqrt(x) returns the properly rounded approximation to the square */ -/* % root of x, in the precision of the calling environment, or it */ -/* % fails if x < 0. */ -/* % t e hull and a abrham, august, 1984 */ -/* if x <= 0 then */ -/* if x < 0 then */ -/* assert false */ -/* else */ -/* result 0 */ -/* end if */ -/* end if */ -/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ -/* var e := getexp(x) % exponent part of x */ -/* var approx : real */ -/* if e mod 2 = 0 then */ -/* approx := .259 + .819 * f % approx to root of f */ -/* else */ -/* f := f/l0 % adjustments */ -/* e := e + 1 % for odd */ -/* approx := .0819 + 2.59 * f % exponent */ -/* end if */ -/* */ -/* var p:= 3 */ -/* const maxp := currentprecision + 2 */ -/* loop */ -/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ -/* precision p */ -/* approx := .5 * (approx + f/approx) */ -/* exit when p = maxp */ -/* end loop */ -/* */ -/* % approx is now within 1 ulp of the properly rounded square root */ -/* % of f; to ensure proper rounding, compare squares of (approx - */ -/* % l/2 ulp) and (approx + l/2 ulp) with f. */ -/* p := currentprecision */ -/* begin */ -/* precision p + 2 */ -/* const approxsubhalf := approx - setexp(.5, -p) */ -/* if mulru(approxsubhalf, approxsubhalf) > f then */ -/* approx := approx - setexp(.l, -p + 1) */ -/* else */ -/* const approxaddhalf := approx + setexp(.5, -p) */ -/* if mulrd(approxaddhalf, approxaddhalf) < f then */ -/* approx := approx + setexp(.l, -p + 1) */ -/* end if */ -/* end if */ -/* end */ -/* result setexp(approx, e div 2) % fix exponent */ -/* end sqrt */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, - decContext *set) { - decContext workset, approxset; /* work contexts */ - decNumber dzero; /* used for constant zero */ - Int maxp; /* largest working precision */ - Int workp; /* working precision */ - Int residue=0; /* rounding residue */ - uInt status=0, ignore=0; /* status accumulators */ - uInt rstatus; /* .. */ - Int exp; /* working exponent */ - Int ideal; /* ideal (preferred) exponent */ - Int needbytes; /* work */ - Int dropped; /* .. */ - - #if DECSUBSET - decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ - #endif - /* buffer for f [needs +1 in case DECBUFFER 0] */ - decNumber buff[D2N(DECBUFFER+1)]; - /* buffer for a [needs +2 to match likely maxp] */ - decNumber bufa[D2N(DECBUFFER+2)]; - /* buffer for temporary, b [must be same size as a] */ - decNumber bufb[D2N(DECBUFFER+2)]; - decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */ - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ - decNumber *f=buff; /* reduced fraction */ - decNumber *a=bufa; /* approximation to result */ - decNumber *b=bufb; /* intermediate result */ - /* buffer for temporary variable, up to 3 digits */ - decNumber buft[D2N(3)]; - decNumber *t=buft; /* up-to-3-digit constant or work */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operand and set lostDigits status, as needed */ - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, &status); - if (allocrhs==NULL) break; - /* [Note: 'f' allocation below could reuse this buffer if */ - /* used, but as this is rare they are kept separate for clarity.] */ - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* handle infinities and NaNs */ - if (SPECIALARG) { - if (decNumberIsInfinite(rhs)) { /* an infinity */ - if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; - else decNumberCopy(res, rhs); /* +Infinity */ - } - else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ - break; - } - - /* calculate the ideal (preferred) exponent [floor(exp/2)] */ - /* [We would like to write: ideal=rhs->exponent>>1, but this */ - /* generates a compiler warning. Generated code is the same.] */ - ideal=(rhs->exponent&~1)/2; /* target */ - - /* handle zeros */ - if (ISZERO(rhs)) { - decNumberCopy(res, rhs); /* could be 0 or -0 */ - res->exponent=ideal; /* use the ideal [safe] */ - /* use decFinish to clamp any out-of-range exponent, etc. */ - decFinish(res, set, &residue, &status); - break; - } - - /* any other -x is an oops */ - if (decNumberIsNegative(rhs)) { - status|=DEC_Invalid_operation; - break; - } - - /* space is needed for three working variables */ - /* f -- the same precision as the RHS, reduced to 0.01->0.99... */ - /* a -- Hull's approximation -- precision, when assigned, is */ - /* currentprecision+1 or the input argument precision, */ - /* whichever is larger (+2 for use as temporary) */ - /* b -- intermediate temporary result (same size as a) */ - /* if any is too long for local storage, then allocate */ - workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */ - maxp=workp+2; /* largest working precision */ - - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>(Int)sizeof(buff)) { - allocbuff=(decNumber *)malloc(needbytes); - if (allocbuff==NULL) { /* hopeless -- abandon */ - status|=DEC_Insufficient_storage; - break;} - f=allocbuff; /* use the allocated space */ - } - /* a and b both need to be able to hold a maxp-length number */ - needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); - if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */ - allocbufa=(decNumber *)malloc(needbytes); - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */ - status|=DEC_Insufficient_storage; - break;} - a=allocbufa; /* use the allocated spaces */ - b=allocbufb; /* .. */ - } - - /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ - decNumberCopy(f, rhs); - exp=f->exponent+f->digits; /* adjusted to Hull rules */ - f->exponent=-(f->digits); /* to range */ - - /* set up working context */ - decContextDefault(&workset, DEC_INIT_DECIMAL64); - - /* [Until further notice, no error is possible and status bits */ - /* (Rounded, etc.) should be ignored, not accumulated.] */ - - /* Calculate initial approximation, and allow for odd exponent */ - workset.digits=workp; /* p for initial calculation */ - t->bits=0; t->digits=3; - a->bits=0; a->digits=3; - if ((exp & 1)==0) { /* even exponent */ - /* Set t=0.259, a=0.819 */ - t->exponent=-3; - a->exponent=-3; - #if DECDPUN>=3 - t->lsu[0]=259; - a->lsu[0]=819; - #elif DECDPUN==2 - t->lsu[0]=59; t->lsu[1]=2; - a->lsu[0]=19; a->lsu[1]=8; - #else - t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; - a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; - #endif - } - else { /* odd exponent */ - /* Set t=0.0819, a=2.59 */ - f->exponent--; /* f=f/10 */ - exp++; /* e=e+1 */ - t->exponent=-4; - a->exponent=-2; - #if DECDPUN>=3 - t->lsu[0]=819; - a->lsu[0]=259; - #elif DECDPUN==2 - t->lsu[0]=19; t->lsu[1]=8; - a->lsu[0]=59; a->lsu[1]=2; - #else - t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; - a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; - #endif - } - decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */ - decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */ - /* [a is now the initial approximation for sqrt(f), calculated with */ - /* currentprecision, which is also a's precision.] */ - - /* the main calculation loop */ - decNumberZero(&dzero); /* make 0 */ - decNumberZero(t); /* set t = 0.5 */ - t->lsu[0]=5; /* .. */ - t->exponent=-1; /* .. */ - workset.digits=3; /* initial p */ - for (;;) { - /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */ - workset.digits=workset.digits*2-2; - if (workset.digits>maxp) workset.digits=maxp; - /* a = 0.5 * (a + f/a) */ - /* [calculated at p then rounded to currentprecision] */ - decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */ - decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */ - decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */ - if (a->digits==maxp) break; /* have required digits */ - } /* loop */ - - /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ - /* now reduce to length, etc.; this needs to be done with a */ - /* having the correct exponent so as to handle subnormals */ - /* correctly */ - approxset=*set; /* get emin, emax, etc. */ - approxset.round=DEC_ROUND_HALF_EVEN; - a->exponent+=exp/2; /* set correct exponent */ - - rstatus=0; /* clear status */ - residue=0; /* .. and accumulator */ - decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */ - decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */ - - /* Overflow was possible if the input exponent was out-of-range, */ - /* in which case quit */ - if (rstatus&DEC_Overflow) { - status=rstatus; /* use the status as-is */ - decNumberCopy(res, a); /* copy to result */ - break; - } - - /* Preserve status except Inexact/Rounded */ - status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); - - /* Carry out the Hull correction */ - a->exponent-=exp/2; /* back to 0.1->1 */ - - /* a is now at final precision and within 1 ulp of the properly */ - /* rounded square root of f; to ensure proper rounding, compare */ - /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ - /* Here workset.digits=maxp and t=0.5, and a->digits determines */ - /* the ulp */ - workset.digits--; /* maxp-1 is OK now */ - t->exponent=-a->digits-1; /* make 0.5 ulp */ - decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */ - workset.round=DEC_ROUND_UP; - decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */ - decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */ - if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */ - /* this is the more common adjustment, though both are rare */ - t->exponent++; /* make 1.0 ulp */ - t->lsu[0]=1; /* .. */ - decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */ - /* assign to approx [round to length] */ - approxset.emin-=exp/2; /* adjust to match a */ - approxset.emax-=exp/2; - decAddOp(a, &dzero, a, &approxset, 0, &ignore); - } - else { - decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */ - workset.round=DEC_ROUND_DOWN; - decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */ - decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */ - if (decNumberIsNegative(b)) { /* b < f */ - t->exponent++; /* make 1.0 ulp */ - t->lsu[0]=1; /* .. */ - decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */ - /* assign to approx [round to length] */ - approxset.emin-=exp/2; /* adjust to match a */ - approxset.emax-=exp/2; - decAddOp(a, &dzero, a, &approxset, 0, &ignore); - } - } - /* [no errors are possible in the above, and rounding/inexact during */ - /* estimation are irrelevant, so status was not accumulated] */ - - /* Here, 0.1 <= a < 1 (still), so adjust back */ - a->exponent+=exp/2; /* set correct exponent */ - - /* count droppable zeros [after any subnormal rounding] by */ - /* trimming a copy */ - decNumberCopy(b, a); - decTrim(b, set, 1, &dropped); /* [drops trailing zeros] */ - - /* Set Inexact and Rounded. The answer can only be exact if */ - /* it is short enough so that squaring it could fit in workp digits, */ - /* and it cannot have trailing zeros due to clamping, so these are */ - /* the only (relatively rare) conditions a careful check is needed */ - if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */ - status|=DEC_Inexact|DEC_Rounded; - } - else { /* could be exact/unrounded */ - uInt mstatus=0; /* local status */ - decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ - if (mstatus&DEC_Overflow) { /* result just won't fit */ - status|=DEC_Inexact|DEC_Rounded; - } - else { /* plausible */ - decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */ - if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */ - else { /* is Exact */ - /* here, dropped is the count of trailing zeros in 'a' */ - /* use closest exponent to ideal... */ - Int todrop=ideal-a->exponent; /* most that can be dropped */ - if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */ - else { /* unrounded */ - if (dropped0) { /* have some to drop */ - decShiftToLeast(a->lsu, D2U(a->digits), todrop); - a->exponent+=todrop; /* maintain numerical value */ - a->digits-=todrop; /* new length */ - } - } - } - } - } - - /* double-check Underflow, as perhaps the result could not have */ - /* been subnormal (initial argument too big), or it is now Exact */ - if (status&DEC_Underflow) { - Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ - /* check if truly subnormal */ - #if DECEXTFLAG /* DEC_Subnormal too */ - if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); - #else - if (ae>=set->emin*2) status&=~DEC_Underflow; - #endif - /* check if truly inexact */ - if (!(status&DEC_Inexact)) status&=~DEC_Underflow; - } - - decNumberCopy(res, a); /* a is now the result */ - } while(0); /* end protected */ - - if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */ - if (allocbufa!=NULL) free(allocbufa); /* .. */ - if (allocbufb!=NULL) free(allocbufb); /* .. */ - #if DECSUBSET - if (allocrhs !=NULL) free(allocrhs); /* .. */ - #endif - if (status!=0) decStatus(res, status, set);/* then report status */ - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberSquareRoot */ - -/* ------------------------------------------------------------------ */ -/* decNumberSubtract -- subtract two Numbers */ -/* */ -/* This computes C = A - B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X-X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* */ -/* C must have space for set->digits digits. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - uInt status=0; /* accumulator */ - - decAddOp(res, lhs, rhs, set, DECNEG, &status); - if (status!=0) decStatus(res, status, set); - #if DECCHECK - decCheckInexact(res, set); - #endif - return res; - } /* decNumberSubtract */ - -/* ------------------------------------------------------------------ */ -/* decNumberToIntegralExact -- round-to-integral-value with InExact */ -/* decNumberToIntegralValue -- round-to-integral-value */ -/* */ -/* res is the result */ -/* rhs is input number */ -/* set is the context */ -/* */ -/* res must have space for any value of rhs. */ -/* */ -/* This implements the IEEE special operators and therefore treats */ -/* special values as valid. For finite numbers it returns */ -/* rescale(rhs, 0) if rhs->exponent is <0. */ -/* Otherwise the result is rhs (so no error is possible, except for */ -/* sNaN). */ -/* */ -/* The context is used for rounding mode and status after sNaN, but */ -/* the digits setting is ignored. The Exact version will signal */ -/* Inexact if the result differs numerically from rhs; the other */ -/* never signals Inexact. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, - decContext *set) { - decNumber dn; - decContext workset; /* working context */ - uInt status=0; /* accumulator */ - - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - /* handle infinities and NaNs */ - if (SPECIALARG) { - if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */ - else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ - } - else { /* finite */ - /* have a finite number; no error possible (res must be big enough) */ - if (rhs->exponent>=0) return decNumberCopy(res, rhs); - /* that was easy, but if negative exponent there is work to do... */ - workset=*set; /* clone rounding, etc. */ - workset.digits=rhs->digits; /* no length rounding */ - workset.traps=0; /* no traps */ - decNumberZero(&dn); /* make a number with exponent 0 */ - decNumberQuantize(res, rhs, &dn, &workset); - status|=workset.status; - } - if (status!=0) decStatus(res, status, set); - return res; - } /* decNumberToIntegralExact */ - -decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, - decContext *set) { - decContext workset=*set; /* working context */ - workset.traps=0; /* no traps */ - decNumberToIntegralExact(res, rhs, &workset); - /* this never affects set, except for sNaNs; NaN will have been set */ - /* or propagated already, so no need to call decStatus */ - set->status|=workset.status&DEC_Invalid_operation; - return res; - } /* decNumberToIntegralValue */ - -/* ------------------------------------------------------------------ */ -/* decNumberXor -- XOR two Numbers, digitwise */ -/* */ -/* This computes C = A ^ B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X^X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context (used for result length and error report) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Logical function restrictions apply (see above); a NaN is */ -/* returned with Invalid_operation if a restriction is violated. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberXor(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - const Unit *ua, *ub; /* -> operands */ - const Unit *msua, *msub; /* -> operand msus */ - Unit *uc, *msuc; /* -> result and its msu */ - Int msudigs; /* digits in res msu */ - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) - || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - /* operands are valid */ - ua=lhs->lsu; /* bottom-up */ - ub=rhs->lsu; /* .. */ - uc=res->lsu; /* .. */ - msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ - msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ - msuc=uc+D2U(set->digits)-1; /* -> msu of result */ - msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ - for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ - Unit a, b; /* extract units */ - if (ua>msua) a=0; - else a=*ua; - if (ub>msub) b=0; - else b=*ub; - *uc=0; /* can now write back */ - if (a|b) { /* maybe 1 bits to examine */ - Int i, j; - /* This loop could be unrolled and/or use BIN2BCD tables */ - for (i=0; i1) { - decStatus(res, DEC_Invalid_operation, set); - return res; - } - if (uc==msuc && i==msudigs-1) break; /* just did final digit */ - } /* each digit */ - } /* non-zero */ - } /* each unit */ - /* [here uc-1 is the msu of the result] */ - res->digits=decGetDigits(res->lsu, uc-res->lsu); - res->exponent=0; /* integer */ - res->bits=0; /* sign=0 */ - return res; /* [no status to set] */ - } /* decNumberXor */ - - -/* ================================================================== */ -/* Utility routines */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decNumberClass -- return the decClass of a decNumber */ -/* dn -- the decNumber to test */ -/* set -- the context to use for Emin */ -/* returns the decClass enum */ -/* ------------------------------------------------------------------ */ -enum decClass decNumberClass(const decNumber *dn, decContext *set) { - if (decNumberIsSpecial(dn)) { - if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; - if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; - /* must be an infinity */ - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; - return DEC_CLASS_POS_INF; - } - /* is finite */ - if (decNumberIsNormal(dn, set)) { /* most common */ - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; - return DEC_CLASS_POS_NORMAL; - } - /* is subnormal or zero */ - if (decNumberIsZero(dn)) { /* most common */ - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; - return DEC_CLASS_POS_ZERO; - } - if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; - return DEC_CLASS_POS_SUBNORMAL; - } /* decNumberClass */ - -/* ------------------------------------------------------------------ */ -/* decNumberClassToString -- convert decClass to a string */ -/* */ -/* eclass is a valid decClass */ -/* returns a constant string describing the class (max 13+1 chars) */ -/* ------------------------------------------------------------------ */ -const char *decNumberClassToString(enum decClass eclass) { - if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; - if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; - if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; - if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; - if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; - if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; - if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; - if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; - if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; - if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; - return DEC_ClassString_UN; /* Unknown */ - } /* decNumberClassToString */ - -/* ------------------------------------------------------------------ */ -/* decNumberCopy -- copy a number */ -/* */ -/* dest is the target decNumber */ -/* src is the source decNumber */ -/* returns dest */ -/* */ -/* (dest==src is allowed and is a no-op) */ -/* All fields are updated as required. This is a utility operation, */ -/* so special values are unchanged and no error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { - - #if DECCHECK - if (src==NULL) return decNumberZero(dest); - #endif - - if (dest==src) return dest; /* no copy required */ - - /* Use explicit assignments here as structure assignment could copy */ - /* more than just the lsu (for small DECDPUN). This would not affect */ - /* the value of the results, but could disturb test harness spill */ - /* checking. */ - dest->bits=src->bits; - dest->exponent=src->exponent; - dest->digits=src->digits; - dest->lsu[0]=src->lsu[0]; - if (src->digits>DECDPUN) { /* more Units to come */ - const Unit *smsup, *s; /* work */ - Unit *d; /* .. */ - /* memcpy for the remaining Units would be safe as they cannot */ - /* overlap. However, this explicit loop is faster in short cases. */ - d=dest->lsu+1; /* -> first destination */ - smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */ - for (s=src->lsu+1; sdigits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* See also decNumberAbs for a checking version of this. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - decNumberCopy(res, rhs); - res->bits&=~DECNEG; /* turn off sign */ - return res; - } /* decNumberCopyAbs */ - -/* ------------------------------------------------------------------ */ -/* decNumberCopyNegate -- quiet negate value operator */ -/* */ -/* This sets C = negate(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* */ -/* C must have space for set->digits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* See also decNumberMinus for a checking version of this. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - decNumberCopy(res, rhs); - res->bits^=DECNEG; /* invert the sign */ - return res; - } /* decNumberCopyNegate */ - -/* ------------------------------------------------------------------ */ -/* decNumberCopySign -- quiet copy and set sign operator */ -/* */ -/* This sets C = A with the sign of B */ -/* */ -/* res is C, the result. C may be A */ -/* lhs is A */ -/* rhs is B */ -/* */ -/* C must have space for set->digits digits. */ -/* No exception or error can occur; this is a quiet bitwise operation.*/ -/* ------------------------------------------------------------------ */ -decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, - const decNumber *rhs) { - uByte sign; /* rhs sign */ - #if DECCHECK - if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; - #endif - sign=rhs->bits & DECNEG; /* save sign bit */ - decNumberCopy(res, lhs); - res->bits&=~DECNEG; /* clear the sign */ - res->bits|=sign; /* set from rhs */ - return res; - } /* decNumberCopySign */ - -/* ------------------------------------------------------------------ */ -/* decNumberGetBCD -- get the coefficient in BCD8 */ -/* dn is the source decNumber */ -/* bcd is the uInt array that will receive dn->digits BCD bytes, */ -/* most-significant at offset 0 */ -/* returns bcd */ -/* */ -/* bcd must have at least dn->digits bytes. No error is possible; if */ -/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ -/* ------------------------------------------------------------------ */ -uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) { - uByte *ub=bcd+dn->digits-1; /* -> lsd */ - const Unit *up=dn->lsu; /* Unit pointer, -> lsu */ - - #if DECDPUN==1 /* trivial simple copy */ - for (; ub>=bcd; ub--, up++) *ub=*up; - #else /* chopping needed */ - uInt u=*up; /* work */ - uInt cut=DECDPUN; /* downcounter through unit */ - for (; ub>=bcd; ub--) { - *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */ - u=u/10; - cut--; - if (cut>0) continue; /* more in this unit */ - up++; - u=*up; - cut=DECDPUN; - } - #endif - return bcd; - } /* decNumberGetBCD */ - -/* ------------------------------------------------------------------ */ -/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ -/* dn is the target decNumber */ -/* bcd is the uInt array that will source n BCD bytes, most- */ -/* significant at offset 0 */ -/* n is the number of digits in the source BCD array (bcd) */ -/* returns dn */ -/* */ -/* dn must have space for at least n digits. No error is possible; */ -/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ -/* and bcd[0] zero. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { - Unit *up = dn->lsu + D2U(n) - 1; /* -> msu [target pointer] */ - const uByte *ub=bcd; /* -> source msd */ - - #if DECDPUN==1 /* trivial simple copy */ - for (; ub=dn->lsu; up--) { /* each Unit from msu */ - *up=0; /* will take <=DECDPUN digits */ - for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; - cut=DECDPUN; /* next Unit has all digits */ - } - #endif - dn->digits=n; /* set digit count */ - return dn; - } /* decNumberSetBCD */ - -/* ------------------------------------------------------------------ */ -/* decNumberIsNormal -- test normality of a decNumber */ -/* dn is the decNumber to test */ -/* set is the context to use for Emin */ -/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ -/* ------------------------------------------------------------------ */ -Int decNumberIsNormal(const decNumber *dn, decContext *set) { - Int ae; /* adjusted exponent */ - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; - #endif - - if (decNumberIsSpecial(dn)) return 0; /* not finite */ - if (decNumberIsZero(dn)) return 0; /* not non-zero */ - - ae=dn->exponent+dn->digits-1; /* adjusted exponent */ - if (aeemin) return 0; /* is subnormal */ - return 1; - } /* decNumberIsNormal */ - -/* ------------------------------------------------------------------ */ -/* decNumberIsSubnormal -- test subnormality of a decNumber */ -/* dn is the decNumber to test */ -/* set is the context to use for Emin */ -/* returns 1 if |dn| is finite, non-zero, and exponent+dn->digits-1; /* adjusted exponent */ - if (aeemin) return 1; /* is subnormal */ - return 0; - } /* decNumberIsSubnormal */ - -/* ------------------------------------------------------------------ */ -/* decNumberTrim -- remove insignificant zeros */ -/* */ -/* dn is the number to trim */ -/* returns dn */ -/* */ -/* All fields are updated as required. This is a utility operation, */ -/* so special values are unchanged and no error is possible. */ -/* ------------------------------------------------------------------ */ -decNumber * decNumberTrim(decNumber *dn) { - Int dropped; /* work */ - decContext set; /* .. */ - #if DECCHECK - if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; - #endif - decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */ - return decTrim(dn, &set, 0, &dropped); - } /* decNumberTrim */ - -/* ------------------------------------------------------------------ */ -/* decNumberVersion -- return the name and version of this module */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -const char * decNumberVersion(void) { - return DECVERSION; - } /* decNumberVersion */ - -/* ------------------------------------------------------------------ */ -/* decNumberZero -- set a number to 0 */ -/* */ -/* dn is the number to set, with space for one digit */ -/* returns dn */ -/* */ -/* No error is possible. */ -/* ------------------------------------------------------------------ */ -/* Memset is not used as it is much slower in some environments. */ -decNumber * decNumberZero(decNumber *dn) { - - #if DECCHECK - if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; - #endif - - dn->bits=0; - dn->exponent=0; - dn->digits=1; - dn->lsu[0]=0; - return dn; - } /* decNumberZero */ - -/* ================================================================== */ -/* Local routines */ -/* ================================================================== */ - -/* ------------------------------------------------------------------ */ -/* decToString -- lay out a number into a string */ -/* */ -/* dn is the number to lay out */ -/* string is where to lay out the number */ -/* eng is 1 if Engineering, 0 if Scientific */ -/* */ -/* string must be at least dn->digits+14 characters long */ -/* No error is possible. */ -/* */ -/* Note that this routine can generate a -0 or 0.000. These are */ -/* never generated in subset to-number or arithmetic, but can occur */ -/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ -/* ------------------------------------------------------------------ */ -/* If DECCHECK is enabled the string "?" is returned if a number is */ -/* invalid. */ -static void decToString(const decNumber *dn, char *string, Flag eng) { - Int exp=dn->exponent; /* local copy */ - Int e; /* E-part value */ - Int pre; /* digits before the '.' */ - Int cut; /* for counting digits in a Unit */ - char *c=string; /* work [output pointer] */ - const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */ - uInt u, pow; /* work */ - - #if DECCHECK - if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { - strcpy(string, "?"); - return;} - #endif - - if (decNumberIsNegative(dn)) { /* Negatives get a minus */ - *c='-'; - c++; - } - if (dn->bits&DECSPECIAL) { /* Is a special value */ - if (decNumberIsInfinite(dn)) { - strcpy(c, "Inf"); - strcpy(c+3, "inity"); - return;} - /* a NaN */ - if (dn->bits&DECSNAN) { /* signalling NaN */ - *c='s'; - c++; - } - strcpy(c, "NaN"); - c+=3; /* step past */ - /* if not a clean non-zero coefficient, that's all there is in a */ - /* NaN string */ - if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; - /* [drop through to add integer] */ - } - - /* calculate how many digits in msu, and hence first cut */ - cut=MSUDIGITS(dn->digits); /* [faster than remainder] */ - cut--; /* power of ten for digit */ - - if (exp==0) { /* simple integer [common fastpath] */ - for (;up>=dn->lsu; up--) { /* each Unit from msu */ - u=*up; /* contains DECDPUN digits to lay out */ - for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); - cut=DECDPUN-1; /* next Unit has all digits */ - } - *c='\0'; /* terminate the string */ - return;} - - /* non-0 exponent -- assume plain form */ - pre=dn->digits+exp; /* digits before '.' */ - e=0; /* no E */ - if ((exp>0) || (pre<-5)) { /* need exponential form */ - e=exp+dn->digits-1; /* calculate E value */ - pre=1; /* assume one digit before '.' */ - if (eng && (e!=0)) { /* engineering: may need to adjust */ - Int adj; /* adjustment */ - /* The C remainder operator is undefined for negative numbers, so */ - /* a positive remainder calculation must be used here */ - if (e<0) { - adj=(-e)%3; - if (adj!=0) adj=3-adj; - } - else { /* e>0 */ - adj=e%3; - } - e=e-adj; - /* if dealing with zero still produce an exponent which is a */ - /* multiple of three, as expected, but there will only be the */ - /* one zero before the E, still. Otherwise note the padding. */ - if (!ISZERO(dn)) pre+=adj; - else { /* is zero */ - if (adj!=0) { /* 0.00Esnn needed */ - e=e+3; - pre=-(2-adj); - } - } /* zero */ - } /* eng */ - } /* need exponent */ - - /* lay out the digits of the coefficient, adding 0s and . as needed */ - u=*up; - if (pre>0) { /* xxx.xxx or xx00 (engineering) form */ - Int n=pre; - for (; pre>0; pre--, c++, cut--) { - if (cut<0) { /* need new Unit */ - if (up==dn->lsu) break; /* out of input digits (pre>digits) */ - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - if (ndigits) { /* more to come, after '.' */ - *c='.'; c++; - for (;; c++, cut--) { - if (cut<0) { /* need new Unit */ - if (up==dn->lsu) break; /* out of input digits */ - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - } - else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ - } - else { /* 0.xxx or 0.000xxx form */ - *c='0'; c++; - *c='.'; c++; - for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */ - for (; ; c++, cut--) { - if (cut<0) { /* need new Unit */ - if (up==dn->lsu) break; /* out of input digits */ - up--; - cut=DECDPUN-1; - u=*up; - } - TODIGIT(u, cut, c, pow); - } - } - - /* Finally add the E-part, if needed. It will never be 0, has a - base maximum and minimum of +999999999 through -999999999, but - could range down to -1999999998 for anormal numbers */ - if (e!=0) { - Flag had=0; /* 1=had non-zero */ - *c='E'; c++; - *c='+'; c++; /* assume positive */ - u=e; /* .. */ - if (e<0) { - *(c-1)='-'; /* oops, need - */ - u=-e; /* uInt, please */ - } - /* lay out the exponent [_itoa or equivalent is not ANSI C] */ - for (cut=9; cut>=0; cut--) { - TODIGIT(u, cut, c, pow); - if (*c=='0' && !had) continue; /* skip leading zeros */ - had=1; /* had non-0 */ - c++; /* step for next */ - } /* cut */ - } - *c='\0'; /* terminate the string (all paths) */ - return; - } /* decToString */ - -/* ------------------------------------------------------------------ */ -/* decAddOp -- add/subtract operation */ -/* */ -/* This computes C = A + B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X+X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* negate is DECNEG if rhs should be negated, or 0 otherwise */ -/* status accumulates status for the caller */ -/* */ -/* C must have space for set->digits digits. */ -/* Inexact in status must be 0 for correct Exact zero sign in result */ -/* ------------------------------------------------------------------ */ -/* If possible, the coefficient is calculated directly into C. */ -/* However, if: */ -/* -- a digits+1 calculation is needed because the numbers are */ -/* unaligned and span more than set->digits digits */ -/* -- a carry to digits+1 digits looks possible */ -/* -- C is the same as A or B, and the result would destructively */ -/* overlap the A or B coefficient */ -/* then the result must be calculated into a temporary buffer. In */ -/* this case a local (stack) buffer is used if possible, and only if */ -/* too long for that does malloc become the final resort. */ -/* */ -/* Misalignment is handled as follows: */ -/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ -/* BPad: Apply the padding by a combination of shifting (whole */ -/* units) and multiplication (part units). */ -/* */ -/* Addition, especially x=x+1, is speed-critical. */ -/* The static buffer is larger than might be expected to allow for */ -/* calls from higher-level functions (notably exp). */ -/* ------------------------------------------------------------------ */ -static decNumber * decAddOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uByte negate, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ - decNumber *allocrhs=NULL; /* .., rhs */ - #endif - Int rhsshift; /* working shift (in Units) */ - Int maxdigits; /* longest logical length */ - Int mult; /* multiplier */ - Int residue; /* rounding accumulator */ - uByte bits; /* result bits */ - Flag diffsign; /* non-0 if arguments have different sign */ - Unit *acc; /* accumulator for result */ - Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */ - /* allocations when called from */ - /* other operations, notable exp] */ - Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ - Int reqdigits=set->digits; /* local copy; requested DIGITS */ - Int padding; /* work */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operands and set lostDigits status, as needed */ - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* note whether signs differ [used all paths] */ - diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); - - /* handle infinities and NaNs */ - if (SPECIALARGS) { /* a special bit set */ - if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */ - decNaNs(res, lhs, rhs, set, status); - else { /* one or two infinities */ - if (decNumberIsInfinite(lhs)) { /* LHS is infinity */ - /* two infinities with different signs is invalid */ - if (decNumberIsInfinite(rhs) && diffsign) { - *status|=DEC_Invalid_operation; - break; - } - bits=lhs->bits & DECNEG; /* get sign from LHS */ - } - else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */ - bits|=DECINF; - decNumberZero(res); - res->bits=bits; /* set +/- infinity */ - } /* an infinity */ - break; - } - - /* Quick exit for add 0s; return the non-0, modified as need be */ - if (ISZERO(lhs)) { - Int adjust; /* work */ - Int lexp=lhs->exponent; /* save in case LHS==RES */ - bits=lhs->bits; /* .. */ - residue=0; /* clear accumulator */ - decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ - res->bits^=negate; /* flip if rhs was negated */ - #if DECSUBSET - if (set->extended) { /* exponents on zeros count */ - #endif - /* exponent will be the lower of the two */ - adjust=lexp-res->exponent; /* adjustment needed [if -ve] */ - if (ISZERO(res)) { /* both 0: special IEEE 854 rules */ - if (adjust<0) res->exponent=lexp; /* set exponent */ - /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ - if (diffsign) { - if (set->round!=DEC_ROUND_FLOOR) res->bits=0; - else res->bits=DECNEG; /* preserve 0 sign */ - } - } - else { /* non-0 res */ - if (adjust<0) { /* 0-padding needed */ - if ((res->digits-adjust)>set->digits) { - adjust=res->digits-set->digits; /* to fit exactly */ - *status|=DEC_Rounded; /* [but exact] */ - } - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; /* set the exponent. */ - } - } /* non-0 res */ - #if DECSUBSET - } /* extended */ - #endif - decFinish(res, set, &residue, status); /* clean and finalize */ - break;} - - if (ISZERO(rhs)) { /* [lhs is non-zero] */ - Int adjust; /* work */ - Int rexp=rhs->exponent; /* save in case RHS==RES */ - bits=rhs->bits; /* be clean */ - residue=0; /* clear accumulator */ - decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ - #if DECSUBSET - if (set->extended) { /* exponents on zeros count */ - #endif - /* exponent will be the lower of the two */ - /* [0-0 case handled above] */ - adjust=rexp-res->exponent; /* adjustment needed [if -ve] */ - if (adjust<0) { /* 0-padding needed */ - if ((res->digits-adjust)>set->digits) { - adjust=res->digits-set->digits; /* to fit exactly */ - *status|=DEC_Rounded; /* [but exact] */ - } - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; /* set the exponent. */ - } - #if DECSUBSET - } /* extended */ - #endif - decFinish(res, set, &residue, status); /* clean and finalize */ - break;} - - /* [NB: both fastpath and mainpath code below assume these cases */ - /* (notably 0-0) have already been handled] */ - - /* calculate the padding needed to align the operands */ - padding=rhs->exponent-lhs->exponent; - - /* Fastpath cases where the numbers are aligned and normal, the RHS */ - /* is all in one unit, no operand rounding is needed, and no carry, */ - /* lengthening, or borrow is needed */ - if (padding==0 - && rhs->digits<=DECDPUN - && rhs->exponent>=set->emin /* [some normals drop through] */ - && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ - && rhs->digits<=reqdigits - && lhs->digits<=reqdigits) { - Int partial=*lhs->lsu; - if (!diffsign) { /* adding */ - partial+=*rhs->lsu; - if ((partial<=DECDPUNMAX) /* result fits in unit */ - && (lhs->digits>=DECDPUN || /* .. and no digits-count change */ - partial<(Int)powers[lhs->digits])) { /* .. */ - if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ - *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */ - break; - } - /* else drop out for careful add */ - } - else { /* signs differ */ - partial-=*rhs->lsu; - if (partial>0) { /* no borrow needed, and non-0 result */ - if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ - *res->lsu=(Unit)partial; - /* this could have reduced digits [but result>0] */ - res->digits=decGetDigits(res->lsu, D2U(res->digits)); - break; - } - /* else drop out for careful subtract */ - } - } - - /* Now align (pad) the lhs or rhs so they can be added or */ - /* subtracted, as necessary. If one number is much larger than */ - /* the other (that is, if in plain form there is a least one */ - /* digit between the lowest digit of one and the highest of the */ - /* other) padding with up to DIGITS-1 trailing zeros may be */ - /* needed; then apply rounding (as exotic rounding modes may be */ - /* affected by the residue). */ - rhsshift=0; /* rhs shift to left (padding) in Units */ - bits=lhs->bits; /* assume sign is that of LHS */ - mult=1; /* likely multiplier */ - - /* [if padding==0 the operands are aligned; no padding is needed] */ - if (padding!=0) { - /* some padding needed; always pad the RHS, as any required */ - /* padding can then be effected by a simple combination of */ - /* shifts and a multiply */ - Flag swapped=0; - if (padding<0) { /* LHS needs the padding */ - const decNumber *t; - padding=-padding; /* will be +ve */ - bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */ - t=lhs; lhs=rhs; rhs=t; - swapped=1; - } - - /* If, after pad, rhs would be longer than lhs by digits+1 or */ - /* more then lhs cannot affect the answer, except as a residue, */ - /* so only need to pad up to a length of DIGITS+1. */ - if (rhs->digits+padding > lhs->digits+reqdigits+1) { - /* The RHS is sufficient */ - /* for residue use the relative sign indication... */ - Int shift=reqdigits-rhs->digits; /* left shift needed */ - residue=1; /* residue for rounding */ - if (diffsign) residue=-residue; /* signs differ */ - /* copy, shortening if necessary */ - decCopyFit(res, rhs, set, &residue, status); - /* if it was already shorter, then need to pad with zeros */ - if (shift>0) { - res->digits=decShiftToMost(res->lsu, res->digits, shift); - res->exponent-=shift; /* adjust the exponent. */ - } - /* flip the result sign if unswapped and rhs was negated */ - if (!swapped) res->bits^=negate; - decFinish(res, set, &residue, status); /* done */ - break;} - - /* LHS digits may affect result */ - rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */ - mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */ - } /* padding needed */ - - if (diffsign) mult=-mult; /* signs differ */ - - /* determine the longer operand */ - maxdigits=rhs->digits+padding; /* virtual length of RHS */ - if (lhs->digits>maxdigits) maxdigits=lhs->digits; - - /* Decide on the result buffer to use; if possible place directly */ - /* into result. */ - acc=res->lsu; /* assume add direct to result */ - /* If destructive overlap, or the number is too long, or a carry or */ - /* borrow to DIGITS+1 might be possible, a buffer must be used. */ - /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ - if ((maxdigits>=reqdigits) /* is, or could be, too large */ - || (res==rhs && rhsshift>0)) { /* destructive overlap */ - /* buffer needed, choose it; units for maxdigits digits will be */ - /* needed, +1 Unit for carry or borrow */ - Int need=D2U(maxdigits)+1; - acc=accbuff; /* assume use local buffer */ - if (need*sizeof(Unit)>sizeof(accbuff)) { - /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ - allocacc=(Unit *)malloc(need*sizeof(Unit)); - if (allocacc==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - acc=allocacc; - } - } - - res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */ - res->exponent=lhs->exponent; /* .. operands (even if aliased) */ - - #if DECTRACE - decDumpAr('A', lhs->lsu, D2U(lhs->digits)); - decDumpAr('B', rhs->lsu, D2U(rhs->digits)); - printf(" :h: %ld %ld\n", rhsshift, mult); - #endif - - /* add [A+B*m] or subtract [A+B*(-m)] */ - res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), - rhsshift, acc, mult) - *DECDPUN; /* [units -> digits] */ - if (res->digits<0) { /* borrowed... */ - res->digits=-res->digits; - res->bits^=DECNEG; /* flip the sign */ - } - #if DECTRACE - decDumpAr('+', acc, D2U(res->digits)); - #endif - - /* If a buffer was used the result must be copied back, possibly */ - /* shortening. (If no buffer was used then the result must have */ - /* fit, so can't need rounding and residue must be 0.) */ - residue=0; /* clear accumulator */ - if (acc!=res->lsu) { - #if DECSUBSET - if (set->extended) { /* round from first significant digit */ - #endif - /* remove leading zeros that were added due to rounding up to */ - /* integral Units -- before the test for rounding. */ - if (res->digits>reqdigits) - res->digits=decGetDigits(acc, D2U(res->digits)); - decSetCoeff(res, set, acc, res->digits, &residue, status); - #if DECSUBSET - } - else { /* subset arithmetic rounds from original significant digit */ - /* May have an underestimate. This only occurs when both */ - /* numbers fit in DECDPUN digits and are padding with a */ - /* negative multiple (-10, -100...) and the top digit(s) become */ - /* 0. (This only matters when using X3.274 rules where the */ - /* leading zero could be included in the rounding.) */ - if (res->digitsdigits))=0; /* ensure leading 0 is there */ - res->digits=maxdigits; - } - else { - /* remove leading zeros that added due to rounding up to */ - /* integral Units (but only those in excess of the original */ - /* maxdigits length, unless extended) before test for rounding. */ - if (res->digits>reqdigits) { - res->digits=decGetDigits(acc, D2U(res->digits)); - if (res->digitsdigits=maxdigits; - } - } - decSetCoeff(res, set, acc, res->digits, &residue, status); - /* Now apply rounding if needed before removing leading zeros. */ - /* This is safe because subnormals are not a possibility */ - if (residue!=0) { - decApplyRound(res, set, residue, status); - residue=0; /* did what needed to be done */ - } - } /* subset */ - #endif - } /* used buffer */ - - /* strip leading zeros [these were left on in case of subset subtract] */ - res->digits=decGetDigits(res->lsu, D2U(res->digits)); - - /* apply checks and rounding */ - decFinish(res, set, &residue, status); - - /* "When the sum of two operands with opposite signs is exactly */ - /* zero, the sign of that sum shall be '+' in all rounding modes */ - /* except round toward -Infinity, in which mode that sign shall be */ - /* '-'." [Subset zeros also never have '-', set by decFinish.] */ - if (ISZERO(res) && diffsign - #if DECSUBSET - && set->extended - #endif - && (*status&DEC_Inexact)==0) { - if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */ - else res->bits&=~DECNEG; /* sign + */ - } - } while(0); /* end protected */ - - if (allocacc!=NULL) free(allocacc); /* drop any storage used */ - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); /* .. */ - if (alloclhs!=NULL) free(alloclhs); /* .. */ - #endif - return res; - } /* decAddOp */ - -/* ------------------------------------------------------------------ */ -/* decDivideOp -- division operation */ -/* */ -/* This routine performs the calculations for all four division */ -/* operators (divide, divideInteger, remainder, remainderNear). */ -/* */ -/* C=A op B */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X/X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ -/* status is the usual accumulator */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* ------------------------------------------------------------------ */ -/* The underlying algorithm of this routine is the same as in the */ -/* 1981 S/370 implementation, that is, non-restoring long division */ -/* with bi-unit (rather than bi-digit) estimation for each unit */ -/* multiplier. In this pseudocode overview, complications for the */ -/* Remainder operators and division residues for exact rounding are */ -/* omitted for clarity. */ -/* */ -/* Prepare operands and handle special values */ -/* Test for x/0 and then 0/x */ -/* Exp =Exp1 - Exp2 */ -/* Exp =Exp +len(var1) -len(var2) */ -/* Sign=Sign1 * Sign2 */ -/* Pad accumulator (Var1) to double-length with 0's (pad1) */ -/* Pad Var2 to same length as Var1 */ -/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ -/* have=0 */ -/* Do until (have=digits+1 OR residue=0) */ -/* if exp<0 then if integer divide/residue then leave */ -/* this_unit=0 */ -/* Do forever */ -/* compare numbers */ -/* if <0 then leave inner_loop */ -/* if =0 then (* quick exit without subtract *) do */ -/* this_unit=this_unit+1; output this_unit */ -/* leave outer_loop; end */ -/* Compare lengths of numbers (mantissae): */ -/* If same then tops2=msu2pair -- {units 1&2 of var2} */ -/* else tops2=msu2plus -- {0, unit 1 of var2} */ -/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ -/* mult=tops1/tops2 -- Good and safe guess at divisor */ -/* if mult=0 then mult=1 */ -/* this_unit=this_unit+mult */ -/* subtract */ -/* end inner_loop */ -/* if have\=0 | this_unit\=0 then do */ -/* output this_unit */ -/* have=have+1; end */ -/* var2=var2/10 */ -/* exp=exp-1 */ -/* end outer_loop */ -/* exp=exp+1 -- set the proper exponent */ -/* if have=0 then generate answer=0 */ -/* Return (Result is defined by Var1) */ -/* */ -/* ------------------------------------------------------------------ */ -/* Two working buffers are needed during the division; one (digits+ */ -/* 1) to accumulate the result, and the other (up to 2*digits+1) for */ -/* long subtractions. These are acc and var1 respectively. */ -/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ -/* The static buffers may be larger than might be expected to allow */ -/* for calls from higher-level functions (notably exp). */ -/* ------------------------------------------------------------------ */ -static decNumber * decDivideOp(decNumber *res, - const decNumber *lhs, const decNumber *rhs, - decContext *set, Flag op, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ - decNumber *allocrhs=NULL; /* .., rhs */ - #endif - Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */ - Unit *acc=accbuff; /* -> accumulator array for result */ - Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */ - Unit *accnext; /* -> where next digit will go */ - Int acclength; /* length of acc needed [Units] */ - Int accunits; /* count of units accumulated */ - Int accdigits; /* count of digits accumulated */ - - Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */ - Unit *var1=varbuff; /* -> var1 array for long subtraction */ - Unit *varalloc=NULL; /* -> allocated buffer, iff used */ - Unit *msu1; /* -> msu of var1 */ - - const Unit *var2; /* -> var2 array */ - const Unit *msu2; /* -> msu of var2 */ - Int msu2plus; /* msu2 plus one [does not vary] */ - eInt msu2pair; /* msu2 pair plus one [does not vary] */ - - Int var1units, var2units; /* actual lengths */ - Int var2ulen; /* logical length (units) */ - Int var1initpad=0; /* var1 initial padding (digits) */ - Int maxdigits; /* longest LHS or required acc length */ - Int mult; /* multiplier for subtraction */ - Unit thisunit; /* current unit being accumulated */ - Int residue; /* for rounding */ - Int reqdigits=set->digits; /* requested DIGITS */ - Int exponent; /* working exponent */ - Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */ - uByte bits; /* working sign */ - Unit *target; /* work */ - const Unit *source; /* .. */ - uLong const *pow; /* .. */ - Int shift, cut; /* .. */ - #if DECSUBSET - Int dropped; /* work */ - #endif - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operands and set lostDigits status, as needed */ - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */ - - /* handle infinities and NaNs */ - if (SPECIALARGS) { /* a special bit set */ - if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ - decNaNs(res, lhs, rhs, set, status); - break; - } - /* one or two infinities */ - if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */ - if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */ - op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */ - *status|=DEC_Invalid_operation; - break; - } - /* [Note that infinity/0 raises no exceptions] */ - decNumberZero(res); - res->bits=bits|DECINF; /* set +/- infinity */ - break; - } - else { /* RHS (divisor) is infinite */ - residue=0; - if (op&(REMAINDER|REMNEAR)) { - /* result is [finished clone of] lhs */ - decCopyFit(res, lhs, set, &residue, status); - } - else { /* a division */ - decNumberZero(res); - res->bits=bits; /* set +/- zero */ - /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */ - /* is a 0 with infinitely negative exponent, clamped to minimum */ - if (op&DIVIDE) { - res->exponent=set->emin-set->digits+1; - *status|=DEC_Clamped; - } - } - decFinish(res, set, &residue, status); - break; - } - } - - /* handle 0 rhs (x/0) */ - if (ISZERO(rhs)) { /* x/0 is always exceptional */ - if (ISZERO(lhs)) { - decNumberZero(res); /* [after lhs test] */ - *status|=DEC_Division_undefined;/* 0/0 will become NaN */ - } - else { - decNumberZero(res); - if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; - else { - *status|=DEC_Division_by_zero; /* x/0 */ - res->bits=bits|DECINF; /* .. is +/- Infinity */ - } - } - break;} - - /* handle 0 lhs (0/x) */ - if (ISZERO(lhs)) { /* 0/x [x!=0] */ - #if DECSUBSET - if (!set->extended) decNumberZero(res); - else { - #endif - if (op&DIVIDE) { - residue=0; - exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ - decNumberCopy(res, lhs); /* [zeros always fit] */ - res->bits=bits; /* sign as computed */ - res->exponent=exponent; /* exponent, too */ - decFinalize(res, set, &residue, status); /* check exponent */ - } - else if (op&DIVIDEINT) { - decNumberZero(res); /* integer 0 */ - res->bits=bits; /* sign as computed */ - } - else { /* a remainder */ - exponent=rhs->exponent; /* [save in case overwrite] */ - decNumberCopy(res, lhs); /* [zeros always fit] */ - if (exponentexponent) res->exponent=exponent; /* use lower */ - } - #if DECSUBSET - } - #endif - break;} - - /* Precalculate exponent. This starts off adjusted (and hence fits */ - /* in 31 bits) and becomes the usual unadjusted exponent as the */ - /* division proceeds. The order of evaluation is important, here, */ - /* to avoid wrap. */ - exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); - - /* If the working exponent is -ve, then some quick exits are */ - /* possible because the quotient is known to be <1 */ - /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ - if (exponent<0 && !(op==DIVIDE)) { - if (op&DIVIDEINT) { - decNumberZero(res); /* integer part is 0 */ - #if DECSUBSET - if (set->extended) - #endif - res->bits=bits; /* set +/- zero */ - break;} - /* fastpath remainders so long as the lhs has the smaller */ - /* (or equal) exponent */ - if (lhs->exponent<=rhs->exponent) { - if (op&REMAINDER || exponent<-1) { - /* It is REMAINDER or safe REMNEAR; result is [finished */ - /* clone of] lhs (r = x - 0*y) */ - residue=0; - decCopyFit(res, lhs, set, &residue, status); - decFinish(res, set, &residue, status); - break; - } - /* [unsafe REMNEAR drops through] */ - } - } /* fastpaths */ - - /* Long (slow) division is needed; roll up the sleeves... */ - - /* The accumulator will hold the quotient of the division. */ - /* If it needs to be too long for stack storage, then allocate. */ - acclength=D2U(reqdigits+DECDPUN); /* in Units */ - if (acclength*sizeof(Unit)>sizeof(accbuff)) { - /* printf("malloc dvacc %ld units\n", acclength); */ - allocacc=(Unit *)malloc(acclength*sizeof(Unit)); - if (allocacc==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - acc=allocacc; /* use the allocated space */ - } - - /* var1 is the padded LHS ready for subtractions. */ - /* If it needs to be too long for stack storage, then allocate. */ - /* The maximum units needed for var1 (long subtraction) is: */ - /* Enough for */ - /* (rhs->digits+reqdigits-1) -- to allow full slide to right */ - /* or (lhs->digits) -- to allow for long lhs */ - /* whichever is larger */ - /* +1 -- for rounding of slide to right */ - /* +1 -- for leading 0s */ - /* +1 -- for pre-adjust if a remainder or DIVIDEINT */ - /* [Note: unused units do not participate in decUnitAddSub data] */ - maxdigits=rhs->digits+reqdigits-1; - if (lhs->digits>maxdigits) maxdigits=lhs->digits; - var1units=D2U(maxdigits)+2; - /* allocate a guard unit above msu1 for REMAINDERNEAR */ - if (!(op&DIVIDE)) var1units++; - if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { - /* printf("malloc dvvar %ld units\n", var1units+1); */ - varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); - if (varalloc==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - var1=varalloc; /* use the allocated space */ - } - - /* Extend the lhs and rhs to full long subtraction length. The lhs */ - /* is truly extended into the var1 buffer, with 0 padding, so a */ - /* subtract in place is always possible. The rhs (var2) has */ - /* virtual padding (implemented by decUnitAddSub). */ - /* One guard unit was allocated above msu1 for rem=rem+rem in */ - /* REMAINDERNEAR. */ - msu1=var1+var1units-1; /* msu of var1 */ - source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */ - for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; - for (; target>=var1; target--) *target=0; - - /* rhs (var2) is left-aligned with var1 at the start */ - var2ulen=var1units; /* rhs logical length (units) */ - var2units=D2U(rhs->digits); /* rhs actual length (units) */ - var2=rhs->lsu; /* -> rhs array */ - msu2=var2+var2units-1; /* -> msu of var2 [never changes] */ - /* now set up the variables which will be used for estimating the */ - /* multiplication factor. If these variables are not exact, add */ - /* 1 to make sure that the multiplier is never overestimated. */ - msu2plus=*msu2; /* it's value .. */ - if (var2units>1) msu2plus++; /* .. +1 if any more */ - msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */ - if (var2units>1) { /* .. [else treat 2nd as 0] */ - msu2pair+=*(msu2-1); /* .. */ - if (var2units>2) msu2pair++; /* .. +1 if any more */ - } - - /* The calculation is working in units, which may have leading zeros, */ - /* but the exponent was calculated on the assumption that they are */ - /* both left-aligned. Adjust the exponent to compensate: add the */ - /* number of leading zeros in var1 msu and subtract those in var2 msu. */ - /* [This is actually done by counting the digits and negating, as */ - /* lead1=DECDPUN-digits1, and similarly for lead2.] */ - for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; - for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; - - /* Now, if doing an integer divide or remainder, ensure that */ - /* the result will be Unit-aligned. To do this, shift the var1 */ - /* accumulator towards least if need be. (It's much easier to */ - /* do this now than to reassemble the residue afterwards, if */ - /* doing a remainder.) Also ensure the exponent is not negative. */ - if (!(op&DIVIDE)) { - Unit *u; /* work */ - /* save the initial 'false' padding of var1, in digits */ - var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; - /* Determine the shift to do. */ - if (exponent<0) cut=-exponent; - else cut=DECDPUN-exponent%DECDPUN; - decShiftToLeast(var1, var1units, cut); - exponent+=cut; /* maintain numerical value */ - var1initpad-=cut; /* .. and reduce padding */ - /* clean any most-significant units which were just emptied */ - for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; - } /* align */ - else { /* is DIVIDE */ - maxexponent=lhs->exponent-rhs->exponent; /* save */ - /* optimization: if the first iteration will just produce 0, */ - /* preadjust to skip it [valid for DIVIDE only] */ - if (*msu1<*msu2) { - var2ulen--; /* shift down */ - exponent-=DECDPUN; /* update the exponent */ - } - } - - /* ---- start the long-division loops ------------------------------ */ - accunits=0; /* no units accumulated yet */ - accdigits=0; /* .. or digits */ - accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */ - for (;;) { /* outer forever loop */ - thisunit=0; /* current unit assumed 0 */ - /* find the next unit */ - for (;;) { /* inner forever loop */ - /* strip leading zero units [from either pre-adjust or from */ - /* subtract last time around]. Leave at least one unit. */ - for (; *msu1==0 && msu1>var1; msu1--) var1units--; - - if (var1units msu */ - for (pv1=msu1; ; pv1--, pv2--) { - /* v1=*pv1 -- always OK */ - v2=0; /* assume in padding */ - if (pv2>=var2) v2=*pv2; /* in range */ - if (*pv1!=v2) break; /* no longer the same */ - if (pv1==var1) break; /* done; leave pv1 as is */ - } - /* here when all inspected or a difference seen */ - if (*pv1v2. Prepare for real subtraction; the lengths are equal */ - /* Estimate the multiplier (there's always a msu1-1)... */ - /* Bring in two units of var2 to provide a good estimate. */ - mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); - } /* lengths the same */ - else { /* var1units > var2ulen, so subtraction is safe */ - /* The var2 msu is one unit towards the lsu of the var1 msu, */ - /* so only one unit for var2 can be used. */ - mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); - } - if (mult==0) mult=1; /* must always be at least 1 */ - /* subtraction needed; var1 is > var2 */ - thisunit=(Unit)(thisunit+mult); /* accumulate */ - /* subtract var1-var2, into var1; only the overlap needs */ - /* processing, as this is an in-place calculation */ - shift=var2ulen-var2units; - #if DECTRACE - decDumpAr('1', &var1[shift], var1units-shift); - decDumpAr('2', var2, var2units); - printf("m=%ld\n", -mult); - #endif - decUnitAddSub(&var1[shift], var1units-shift, - var2, var2units, 0, - &var1[shift], -mult); - #if DECTRACE - decDumpAr('#', &var1[shift], var1units-shift); - #endif - /* var1 now probably has leading zeros; these are removed at the */ - /* top of the inner loop. */ - } /* inner loop */ - - /* The next unit has been calculated in full; unless it's a */ - /* leading zero, add to acc */ - if (accunits!=0 || thisunit!=0) { /* is first or non-zero */ - *accnext=thisunit; /* store in accumulator */ - /* account exactly for the new digits */ - if (accunits==0) { - accdigits++; /* at least one */ - for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; - } - else accdigits+=DECDPUN; - accunits++; /* update count */ - accnext--; /* ready for next */ - if (accdigits>reqdigits) break; /* have enough digits */ - } - - /* if the residue is zero, the operation is done (unless divide */ - /* or divideInteger and still not enough digits yet) */ - if (*var1==0 && var1units==1) { /* residue is 0 */ - if (op&(REMAINDER|REMNEAR)) break; - if ((op&DIVIDE) && (exponent<=maxexponent)) break; - /* [drop through if divideInteger] */ - } - /* also done enough if calculating remainder or integer */ - /* divide and just did the last ('units') unit */ - if (exponent==0 && !(op&DIVIDE)) break; - - /* to get here, var1 is less than var2, so divide var2 by the per- */ - /* Unit power of ten and go for the next digit */ - var2ulen--; /* shift down */ - exponent-=DECDPUN; /* update the exponent */ - } /* outer loop */ - - /* ---- division is complete --------------------------------------- */ - /* here: acc has at least reqdigits+1 of good results (or fewer */ - /* if early stop), starting at accnext+1 (its lsu) */ - /* var1 has any residue at the stopping point */ - /* accunits is the number of digits collected in acc */ - if (accunits==0) { /* acc is 0 */ - accunits=1; /* show have a unit .. */ - accdigits=1; /* .. */ - *accnext=0; /* .. whose value is 0 */ - } - else accnext++; /* back to last placed */ - /* accnext now -> lowest unit of result */ - - residue=0; /* assume no residue */ - if (op&DIVIDE) { - /* record the presence of any residue, for rounding */ - if (*var1!=0 || var1units>1) residue=1; - else { /* no residue */ - /* Had an exact division; clean up spurious trailing 0s. */ - /* There will be at most DECDPUN-1, from the final multiply, */ - /* and then only if the result is non-0 (and even) and the */ - /* exponent is 'loose'. */ - #if DECDPUN>1 - Unit lsu=*accnext; - if (!(lsu&0x01) && (lsu!=0)) { - /* count the trailing zeros */ - Int drop=0; - for (;; drop++) { /* [will terminate because lsu!=0] */ - if (exponent>=maxexponent) break; /* don't chop real 0s */ - #if DECDPUN<=4 - if ((lsu-QUOT10(lsu, drop+1) - *powers[drop+1])!=0) break; /* found non-0 digit */ - #else - if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */ - #endif - exponent++; - } - if (drop>0) { - accunits=decShiftToLeast(accnext, accunits, drop); - accdigits=decGetDigits(accnext, accunits); - accunits=D2U(accdigits); - /* [exponent was adjusted in the loop] */ - } - } /* neither odd nor 0 */ - #endif - } /* exact divide */ - } /* divide */ - else /* op!=DIVIDE */ { - /* check for coefficient overflow */ - if (accdigits+exponent>reqdigits) { - *status|=DEC_Division_impossible; - break; - } - if (op & (REMAINDER|REMNEAR)) { - /* [Here, the exponent will be 0, because var1 was adjusted */ - /* appropriately.] */ - Int postshift; /* work */ - Flag wasodd=0; /* integer was odd */ - Unit *quotlsu; /* for save */ - Int quotdigits; /* .. */ - - bits=lhs->bits; /* remainder sign is always as lhs */ - - /* Fastpath when residue is truly 0 is worthwhile [and */ - /* simplifies the code below] */ - if (*var1==0 && var1units==1) { /* residue is 0 */ - Int exp=lhs->exponent; /* save min(exponents) */ - if (rhs->exponentexponent; - decNumberZero(res); /* 0 coefficient */ - #if DECSUBSET - if (set->extended) - #endif - res->exponent=exp; /* .. with proper exponent */ - res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ - decFinish(res, set, &residue, status); /* might clamp */ - break; - } - /* note if the quotient was odd */ - if (*accnext & 0x01) wasodd=1; /* acc is odd */ - quotlsu=accnext; /* save in case need to reinspect */ - quotdigits=accdigits; /* .. */ - - /* treat the residue, in var1, as the value to return, via acc */ - /* calculate the unused zero digits. This is the smaller of: */ - /* var1 initial padding (saved above) */ - /* var2 residual padding, which happens to be given by: */ - postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; - /* [the 'exponent' term accounts for the shifts during divide] */ - if (var1initpadexponent; /* exponent is smaller of lhs & rhs */ - if (rhs->exponentexponent; - - /* Now correct the result if doing remainderNear; if it */ - /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ - /* the integer was odd then the result should be rem-rhs. */ - if (op&REMNEAR) { - Int compare, tarunits; /* work */ - Unit *up; /* .. */ - /* calculate remainder*2 into the var1 buffer (which has */ - /* 'headroom' of an extra unit and hence enough space) */ - /* [a dedicated 'double' loop would be faster, here] */ - tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, - 0, accnext, 1); - /* decDumpAr('r', accnext, tarunits); */ - - /* Here, accnext (var1) holds tarunits Units with twice the */ - /* remainder's coefficient, which must now be compared to the */ - /* RHS. The remainder's exponent may be smaller than the RHS's. */ - compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), - rhs->exponent-exponent); - if (compare==BADINT) { /* deep trouble */ - *status|=DEC_Insufficient_storage; - break;} - - /* now restore the remainder by dividing by two; the lsu */ - /* is known to be even. */ - for (up=accnext; up0 || (compare==0 && wasodd)) { /* adjustment needed */ - Int exp, expunits, exprem; /* work */ - /* This is effectively causing round-up of the quotient, */ - /* so if it was the rare case where it was full and all */ - /* nines, it would overflow and hence division-impossible */ - /* should be raised */ - Flag allnines=0; /* 1 if quotient all nines */ - if (quotdigits==reqdigits) { /* could be borderline */ - for (up=quotlsu; ; up++) { - if (quotdigits>DECDPUN) { - if (*up!=DECDPUNMAX) break;/* non-nines */ - } - else { /* this is the last Unit */ - if (*up==powers[quotdigits]-1) allnines=1; - break; - } - quotdigits-=DECDPUN; /* checked those digits */ - } /* up */ - } /* borderline check */ - if (allnines) { - *status|=DEC_Division_impossible; - break;} - - /* rem-rhs is needed; the sign will invert. Again, var1 */ - /* can safely be used for the working Units array. */ - exp=rhs->exponent-exponent; /* RHS padding needed */ - /* Calculate units and remainder from exponent. */ - expunits=exp/DECDPUN; - exprem=exp%DECDPUN; - /* subtract [A+B*(-m)]; the result will always be negative */ - accunits=-decUnitAddSub(accnext, accunits, - rhs->lsu, D2U(rhs->digits), - expunits, accnext, -(Int)powers[exprem]); - accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ - accunits=D2U(accdigits); /* and recalculate the units for copy */ - /* [exponent is as for original remainder] */ - bits^=DECNEG; /* flip the sign */ - } - } /* REMNEAR */ - } /* REMAINDER or REMNEAR */ - } /* not DIVIDE */ - - /* Set exponent and bits */ - res->exponent=exponent; - res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ - - /* Now the coefficient. */ - decSetCoeff(res, set, accnext, accdigits, &residue, status); - - decFinish(res, set, &residue, status); /* final cleanup */ - - #if DECSUBSET - /* If a divide then strip trailing zeros if subset [after round] */ - if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped); - #endif - } while(0); /* end protected */ - - if (varalloc!=NULL) free(varalloc); /* drop any storage used */ - if (allocacc!=NULL) free(allocacc); /* .. */ - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); /* .. */ - if (alloclhs!=NULL) free(alloclhs); /* .. */ - #endif - return res; - } /* decDivideOp */ - -/* ------------------------------------------------------------------ */ -/* decMultiplyOp -- multiplication operation */ -/* */ -/* This routine performs the multiplication C=A x B. */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X*X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* status is the usual accumulator */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* ------------------------------------------------------------------ */ -/* 'Classic' multiplication is used rather than Karatsuba, as the */ -/* latter would give only a minor improvement for the short numbers */ -/* expected to be handled most (and uses much more memory). */ -/* */ -/* There are two major paths here: the general-purpose ('old code') */ -/* path which handles all DECDPUN values, and a fastpath version */ -/* which is used if 64-bit ints are available, DECDPUN<=4, and more */ -/* than two calls to decUnitAddSub would be made. */ -/* */ -/* The fastpath version lumps units together into 8-digit or 9-digit */ -/* chunks, and also uses a lazy carry strategy to minimise expensive */ -/* 64-bit divisions. The chunks are then broken apart again into */ -/* units for continuing processing. Despite this overhead, the */ -/* fastpath can speed up some 16-digit operations by 10x (and much */ -/* more for higher-precision calculations). */ -/* */ -/* A buffer always has to be used for the accumulator; in the */ -/* fastpath, buffers are also always needed for the chunked copies of */ -/* of the operand coefficients. */ -/* Static buffers are larger than needed just for multiply, to allow */ -/* for calls from other operations (notably exp). */ -/* ------------------------------------------------------------------ */ -#define FASTMUL (DECUSE64 && DECDPUN<5) -static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uInt *status) { - Int accunits; /* Units of accumulator in use */ - Int exponent; /* work */ - Int residue=0; /* rounding residue */ - uByte bits; /* result sign */ - Unit *acc; /* -> accumulator Unit array */ - Int needbytes; /* size calculator */ - void *allocacc=NULL; /* -> allocated accumulator, iff allocated */ - Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */ - /* *4 for calls from other operations) */ - const Unit *mer, *mermsup; /* work */ - Int madlength; /* Units in multiplicand */ - Int shift; /* Units to shift multiplicand by */ - - #if FASTMUL - /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ - /* (DECDPUN is 2 or 4) then work in base 10**8 */ - #if DECDPUN & 1 /* odd */ - #define FASTBASE 1000000000 /* base */ - #define FASTDIGS 9 /* digits in base */ - #define FASTLAZY 18 /* carry resolution point [1->18] */ - #else - #define FASTBASE 100000000 - #define FASTDIGS 8 - #define FASTLAZY 1844 /* carry resolution point [1->1844] */ - #endif - /* three buffers are used, two for chunked copies of the operands */ - /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ - /* lazy carry evaluation */ - uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ - uInt *zlhi=zlhibuff; /* -> lhs array */ - uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */ - uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ - uInt *zrhi=zrhibuff; /* -> rhs array */ - uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */ - uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ - /* [allocacc is shared for both paths, as only one will run] */ - uLong *zacc=zaccbuff; /* -> accumulator array for exact result */ - #if DECDPUN==1 - Int zoff; /* accumulator offset */ - #endif - uInt *lip, *rip; /* item pointers */ - uInt *lmsi, *rmsi; /* most significant items */ - Int ilhs, irhs, iacc; /* item counts in the arrays */ - Int lazy; /* lazy carry counter */ - uLong lcarry; /* uLong carry */ - uInt carry; /* carry (NB not uLong) */ - Int count; /* work */ - const Unit *cup; /* .. */ - Unit *up; /* .. */ - uLong *lp; /* .. */ - Int p; /* .. */ - #endif - - #if DECSUBSET - decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */ - decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */ - #endif - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - /* precalculate result sign */ - bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); - - /* handle infinities and NaNs */ - if (SPECIALARGS) { /* a special bit set */ - if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ - decNaNs(res, lhs, rhs, set, status); - return res;} - /* one or two infinities; Infinity * 0 is invalid */ - if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) - ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { - *status|=DEC_Invalid_operation; - return res;} - decNumberZero(res); - res->bits=bits|DECINF; /* infinity */ - return res;} - - /* For best speed, as in DMSRCN [the original Rexx numerics */ - /* module], use the shorter number as the multiplier (rhs) and */ - /* the longer as the multiplicand (lhs) to minimise the number of */ - /* adds (partial products) */ - if (lhs->digitsdigits) { /* swap... */ - const decNumber *hold=lhs; - lhs=rhs; - rhs=hold; - } - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operands and set lostDigits status, as needed */ - if (lhs->digits>set->digits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - #if FASTMUL /* fastpath can be used */ - /* use the fast path if there are enough digits in the shorter */ - /* operand to make the setup and takedown worthwhile */ - #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */ - if (rhs->digits>NEEDTWO) { /* use fastpath... */ - /* calculate the number of elements in each array */ - ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */ - irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */ - iacc=ilhs+irhs; - - /* allocate buffers if required, as usual */ - needbytes=ilhs*sizeof(uInt); - if (needbytes>(Int)sizeof(zlhibuff)) { - alloclhi=(uInt *)malloc(needbytes); - zlhi=alloclhi;} - needbytes=irhs*sizeof(uInt); - if (needbytes>(Int)sizeof(zrhibuff)) { - allocrhi=(uInt *)malloc(needbytes); - zrhi=allocrhi;} - - /* Allocating the accumulator space needs a special case when */ - /* DECDPUN=1 because when converting the accumulator to Units */ - /* after the multiplication each 8-byte item becomes 9 1-byte */ - /* units. Therefore iacc extra bytes are needed at the front */ - /* (rounded up to a multiple of 8 bytes), and the uLong */ - /* accumulator starts offset the appropriate number of units */ - /* to the right to avoid overwrite during the unchunking. */ - needbytes=iacc*sizeof(uLong); - #if DECDPUN==1 - zoff=(iacc+7)/8; /* items to offset by */ - needbytes+=zoff*8; - #endif - if (needbytes>(Int)sizeof(zaccbuff)) { - allocacc=(uLong *)malloc(needbytes); - zacc=(uLong *)allocacc;} - if (zlhi==NULL||zrhi==NULL||zacc==NULL) { - *status|=DEC_Insufficient_storage; - break;} - - acc=(Unit *)zacc; /* -> target Unit array */ - #if DECDPUN==1 - zacc+=zoff; /* start uLong accumulator to right */ - #endif - - /* assemble the chunked copies of the left and right sides */ - for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) - for (p=0, *lip=0; p0; - p+=DECDPUN, cup++, count-=DECDPUN) - *lip+=*cup*powers[p]; - lmsi=lip-1; /* save -> msi */ - for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) - for (p=0, *rip=0; p0; - p+=DECDPUN, cup++, count-=DECDPUN) - *rip+=*cup*powers[p]; - rmsi=rip-1; /* save -> msi */ - - /* zero the accumulator */ - for (lp=zacc; lp0 && rip!=rmsi) continue; - lazy=FASTLAZY; /* reset delay count */ - /* spin up the accumulator resolving overflows */ - for (lp=zacc; lp assume buffer for accumulator */ - needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); - if (needbytes>(Int)sizeof(accbuff)) { - allocacc=(Unit *)malloc(needbytes); - if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} - acc=(Unit *)allocacc; /* use the allocated space */ - } - - /* Now the main long multiplication loop */ - /* Unlike the equivalent in the IBM Java implementation, there */ - /* is no advantage in calculating from msu to lsu. So, do it */ - /* by the book, as it were. */ - /* Each iteration calculates ACC=ACC+MULTAND*MULT */ - accunits=1; /* accumulator starts at '0' */ - *acc=0; /* .. (lsu=0) */ - shift=0; /* no multiplicand shift at first */ - madlength=D2U(lhs->digits); /* this won't change */ - mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */ - - for (mer=rhs->lsu; merlsu, madlength, 0, - &acc[shift], *mer) - + shift; - else { /* extend acc with a 0; it will be used shortly */ - *(acc+accunits)=0; /* [this avoids length of <=0 later] */ - accunits++; - } - /* multiply multiplicand by 10**DECDPUN for next Unit to left */ - shift++; /* add this for 'logical length' */ - } /* n */ - #if FASTMUL - } /* unchunked units */ - #endif - /* common end-path */ - #if DECTRACE - decDumpAr('*', acc, accunits); /* Show exact result */ - #endif - - /* acc now contains the exact result of the multiplication, */ - /* possibly with a leading zero unit; build the decNumber from */ - /* it, noting if any residue */ - res->bits=bits; /* set sign */ - res->digits=decGetDigits(acc, accunits); /* count digits exactly */ - - /* There can be a 31-bit wrap in calculating the exponent. */ - /* This can only happen if both input exponents are negative and */ - /* both their magnitudes are large. If there was a wrap, set a */ - /* safe very negative exponent, from which decFinalize() will */ - /* raise a hard underflow shortly. */ - exponent=lhs->exponent+rhs->exponent; /* calculate exponent */ - if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) - exponent=-2*DECNUMMAXE; /* force underflow */ - res->exponent=exponent; /* OK to overwrite now */ - - - /* Set the coefficient. If any rounding, residue records */ - decSetCoeff(res, set, acc, res->digits, &residue, status); - decFinish(res, set, &residue, status); /* final cleanup */ - } while(0); /* end protected */ - - if (allocacc!=NULL) free(allocacc); /* drop any storage used */ - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); /* .. */ - if (alloclhs!=NULL) free(alloclhs); /* .. */ - #endif - #if FASTMUL - if (allocrhi!=NULL) free(allocrhi); /* .. */ - if (alloclhi!=NULL) free(alloclhi); /* .. */ - #endif - return res; - } /* decMultiplyOp */ - -/* ------------------------------------------------------------------ */ -/* decExpOp -- effect exponentiation */ -/* */ -/* This computes C = exp(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. status is updated but */ -/* not set. */ -/* */ -/* Restrictions: */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ -/* bounds or a zero. This is an internal routine, so these */ -/* restrictions are contractual and not enforced. */ -/* */ -/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* */ -/* Finite results will always be full precision and Inexact, except */ -/* when A is a zero or -Infinity (giving 1 or 0 respectively). */ -/* ------------------------------------------------------------------ */ -/* This approach used here is similar to the algorithm described in */ -/* */ -/* Variable Precision Exponential Function, T. E. Hull and */ -/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ -/* pp79-91, ACM, June 1986. */ -/* */ -/* with the main difference being that the iterations in the series */ -/* evaluation are terminated dynamically (which does not require the */ -/* extra variable-precision variables which are expensive in this */ -/* context). */ -/* */ -/* The error analysis in Hull & Abrham's paper applies except for the */ -/* round-off error accumulation during the series evaluation. This */ -/* code does not precalculate the number of iterations and so cannot */ -/* use Horner's scheme. Instead, the accumulation is done at double- */ -/* precision, which ensures that the additions of the terms are exact */ -/* and do not accumulate round-off (and any round-off errors in the */ -/* terms themselves move 'to the right' faster than they can */ -/* accumulate). This code also extends the calculation by allowing, */ -/* in the spirit of other decNumber operators, the input to be more */ -/* precise than the result (the precision used is based on the more */ -/* precise of the input or requested result). */ -/* */ -/* Implementation notes: */ -/* */ -/* 1. This is separated out as decExpOp so it can be called from */ -/* other Mathematical functions (notably Ln) with a wider range */ -/* than normal. In particular, it can handle the slightly wider */ -/* (double) range needed by Ln (which has to be able to calculate */ -/* exp(-x) where x can be the tiniest number (Ntiny). */ -/* */ -/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ -/* iterations by approximately a third with additional (although */ -/* diminishing) returns as the range is reduced to even smaller */ -/* fractions. However, h (the power of 10 used to correct the */ -/* result at the end, see below) must be kept <=8 as otherwise */ -/* the final result cannot be computed. Hence the leverage is a */ -/* sliding value (8-h), where potentially the range is reduced */ -/* more for smaller values. */ -/* */ -/* The leverage that can be applied in this way is severely */ -/* limited by the cost of the raise-to-the power at the end, */ -/* which dominates when the number of iterations is small (less */ -/* than ten) or when rhs is short. As an example, the adjustment */ -/* x**10,000,000 needs 31 multiplications, all but one full-width. */ -/* */ -/* 3. The restrictions (especially precision) could be raised with */ -/* care, but the full decNumber range seems very hard within the */ -/* 32-bit limits. */ -/* */ -/* 4. The working precisions for the static buffers are twice the */ -/* obvious size to allow for calls from decNumberPower. */ -/* ------------------------------------------------------------------ */ -static decNumber *decExpOp(decNumber *res, const decNumber *rhs, - decContext *set, uInt *status) { - uInt ignore=0; /* working status */ - Int h; /* adjusted exponent for 0.xxxx */ - Int p; /* working precision */ - Int residue; /* rounding residue */ - uInt needbytes; /* for space calculations */ - const decNumber *x=rhs; /* (may point to safe copy later) */ - decContext aset, tset, dset; /* working contexts */ - Int comp; /* work */ - - /* the argument is often copied to normalize it, so (unusually) it */ - /* is treated like other buffers, using DECBUFFER, +1 in case */ - /* DECBUFFER is 0 */ - decNumber bufr[D2N(DECBUFFER*2+1)]; - decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */ - - /* the working precision will be no more than set->digits+8+1 */ - /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ - /* is 0 (and twice that for the accumulator) */ - - /* buffer for t, term (working precision plus) */ - decNumber buft[D2N(DECBUFFER*2+9+1)]; - decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */ - decNumber *t=buft; /* term */ - /* buffer for a, accumulator (working precision * 2), at least 9 */ - decNumber bufa[D2N(DECBUFFER*4+18+1)]; - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber *a=bufa; /* accumulator */ - /* decNumber for the divisor term; this needs at most 9 digits */ - /* and so can be fixed size [16 so can use standard context] */ - decNumber bufd[D2N(16)]; - decNumber *d=bufd; /* divisor */ - decNumber numone; /* constant 1 */ - - #if DECCHECK - Int iterations=0; /* for later sanity check */ - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - if (SPECIALARG) { /* handle infinities and NaNs */ - if (decNumberIsInfinite(rhs)) { /* an infinity */ - if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */ - decNumberZero(res); - else decNumberCopy(res, rhs); /* +Infinity -> self */ - } - else decNaNs(res, rhs, NULL, set, status); /* a NaN */ - break;} - - if (ISZERO(rhs)) { /* zeros -> exact 1 */ - decNumberZero(res); /* make clean 1 */ - *res->lsu=1; /* .. */ - break;} /* [no status to set] */ - - /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */ - /* positive and negative tiny cases which will result in inexact */ - /* 1. This also allows the later add-accumulate to always be */ - /* exact (because its length will never be more than twice the */ - /* working precision). */ - /* The comparator (tiny) needs just one digit, so use the */ - /* decNumber d for it (reused as the divisor, etc., below); its */ - /* exponent is such that if x is positive it will have */ - /* set->digits-1 zeros between the decimal point and the digit, */ - /* which is 4, and if x is negative one more zero there as the */ - /* more precise result will be of the form 0.9999999 rather than */ - /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */ - /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */ - /* this then the result will be 1.000000 */ - decNumberZero(d); /* clean */ - *d->lsu=4; /* set 4 .. */ - d->exponent=-set->digits; /* * 10**(-d) */ - if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */ - comp=decCompare(d, rhs, 1); /* signless compare */ - if (comp==BADINT) { - *status|=DEC_Insufficient_storage; - break;} - if (comp>=0) { /* rhs < d */ - Int shift=set->digits-1; - decNumberZero(res); /* set 1 */ - *res->lsu=1; /* .. */ - res->digits=decShiftToMost(res->lsu, 1, shift); - res->exponent=-shift; /* make 1.0000... */ - *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */ - break;} /* tiny */ - - /* set up the context to be used for calculating a, as this is */ - /* used on both paths below */ - decContextDefault(&aset, DEC_INIT_DECIMAL64); - /* accumulator bounds are as requested (could underflow) */ - aset.emax=set->emax; /* usual bounds */ - aset.emin=set->emin; /* .. */ - aset.clamp=0; /* and no concrete format */ - - /* calculate the adjusted (Hull & Abrham) exponent (where the */ - /* decimal point is just to the left of the coefficient msd) */ - h=rhs->exponent+rhs->digits; - /* if h>8 then 10**h cannot be calculated safely; however, when */ - /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */ - /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */ - /* overflow (or underflow to 0) is guaranteed -- so this case can */ - /* be handled by simply forcing the appropriate excess */ - if (h>8) { /* overflow/underflow */ - /* set up here so Power call below will over or underflow to */ - /* zero; set accumulator to either 2 or 0.02 */ - /* [stack buffer for a is always big enough for this] */ - decNumberZero(a); - *a->lsu=2; /* not 1 but < exp(1) */ - if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */ - h=8; /* clamp so 10**h computable */ - p=9; /* set a working precision */ - } - else { /* h<=8 */ - Int maxlever=(rhs->digits>8?1:0); - /* [could/should increase this for precisions >40 or so, too] */ - - /* if h is 8, cannot normalize to a lower upper limit because */ - /* the final result will not be computable (see notes above), */ - /* but leverage can be applied whenever h is less than 8. */ - /* Apply as much as possible, up to a MAXLEVER digits, which */ - /* sets the tradeoff against the cost of the later a**(10**h). */ - /* As h is increased, the working precision below also */ - /* increases to compensate for the "constant digits at the */ - /* front" effect. */ - Int lever=MINI(8-h, maxlever); /* leverage attainable */ - Int use=-rhs->digits-lever; /* exponent to use for RHS */ - h+=lever; /* apply leverage selected */ - if (h<0) { /* clamp */ - use+=h; /* [may end up subnormal] */ - h=0; - } - /* Take a copy of RHS if it needs normalization (true whenever x>=1) */ - if (rhs->exponent!=use) { - decNumber *newrhs=bufr; /* assume will fit on stack */ - needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); - if (needbytes>sizeof(bufr)) { /* need malloc space */ - allocrhs=(decNumber *)malloc(needbytes); - if (allocrhs==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - newrhs=allocrhs; /* use the allocated space */ - } - decNumberCopy(newrhs, rhs); /* copy to safe space */ - newrhs->exponent=use; /* normalize; now <1 */ - x=newrhs; /* ready for use */ - /* decNumberShow(x); */ - } - - /* Now use the usual power series to evaluate exp(x). The */ - /* series starts as 1 + x + x^2/2 ... so prime ready for the */ - /* third term by setting the term variable t=x, the accumulator */ - /* a=1, and the divisor d=2. */ - - /* First determine the working precision. From Hull & Abrham */ - /* this is set->digits+h+2. However, if x is 'over-precise' we */ - /* need to allow for all its digits to potentially participate */ - /* (consider an x where all the excess digits are 9s) so in */ - /* this case use x->digits+h+2 */ - p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */ - - /* a and t are variable precision, and depend on p, so space */ - /* must be allocated for them if necessary */ - - /* the accumulator needs to be able to hold 2p digits so that */ - /* the additions on the second and subsequent iterations are */ - /* sufficiently exact. */ - needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { /* need malloc space */ - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - a=allocbufa; /* use the allocated space */ - } - /* the term needs to be able to hold p digits (which is */ - /* guaranteed to be larger than x->digits, so the initial copy */ - /* is safe); it may also be used for the raise-to-power */ - /* calculation below, which needs an extra two digits */ - needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); - if (needbytes>sizeof(buft)) { /* need malloc space */ - allocbuft=(decNumber *)malloc(needbytes); - if (allocbuft==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - t=allocbuft; /* use the allocated space */ - } - - decNumberCopy(t, x); /* term=x */ - decNumberZero(a); *a->lsu=1; /* accumulator=1 */ - decNumberZero(d); *d->lsu=2; /* divisor=2 */ - decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */ - - /* set up the contexts for calculating a, t, and d */ - decContextDefault(&tset, DEC_INIT_DECIMAL64); - dset=tset; - /* accumulator bounds are set above, set precision now */ - aset.digits=p*2; /* double */ - /* term bounds avoid any underflow or overflow */ - tset.digits=p; - tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */ - /* [dset.digits=16, etc., are sufficient] */ - - /* finally ready to roll */ - for (;;) { - #if DECCHECK - iterations++; - #endif - /* only the status from the accumulation is interesting */ - /* [but it should remain unchanged after first add] */ - decAddOp(a, a, t, &aset, 0, status); /* a=a+t */ - decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */ - decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */ - /* the iteration ends when the term cannot affect the result, */ - /* if rounded to p digits, which is when its value is smaller */ - /* than the accumulator by p+1 digits. There must also be */ - /* full precision in a. */ - if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) - && (a->digits>=p)) break; - decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */ - } /* iterate */ - - #if DECCHECK - /* just a sanity check; comment out test to show always */ - if (iterations>p+3) - printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", - iterations, *status, p, x->digits); - #endif - } /* h<=8 */ - - /* apply postconditioning: a=a**(10**h) -- this is calculated */ - /* at a slightly higher precision than Hull & Abrham suggest */ - if (h>0) { - Int seenbit=0; /* set once a 1-bit is seen */ - Int i; /* counter */ - Int n=powers[h]; /* always positive */ - aset.digits=p+2; /* sufficient precision */ - /* avoid the overhead and many extra digits of decNumberPower */ - /* as all that is needed is the short 'multipliers' loop; here */ - /* accumulate the answer into t */ - decNumberZero(t); *t->lsu=1; /* acc=1 */ - for (i=1;;i++){ /* for each bit [top bit ignored] */ - /* abandon if have had overflow or terminal underflow */ - if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ - if (*status&DEC_Overflow || ISZERO(t)) break;} - n=n<<1; /* move next bit to testable position */ - if (n<0) { /* top bit is set */ - seenbit=1; /* OK, have a significant bit */ - decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */ - } - if (i==31) break; /* that was the last bit */ - if (!seenbit) continue; /* no need to square 1 */ - decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */ - } /*i*/ /* 32 bits */ - /* decNumberShow(t); */ - a=t; /* and carry on using t instead of a */ - } - - /* Copy and round the result to res */ - residue=1; /* indicate dirt to right .. */ - if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ - aset.digits=set->digits; /* [use default rounding] */ - decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ - decFinish(res, set, &residue, status); /* cleanup/set flags */ - } while(0); /* end protected */ - - if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ - if (allocbufa!=NULL) free(allocbufa); /* .. */ - if (allocbuft!=NULL) free(allocbuft); /* .. */ - /* [status is handled by caller] */ - return res; - } /* decExpOp */ - -/* ------------------------------------------------------------------ */ -/* Initial-estimate natural logarithm table */ -/* */ -/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ -/* The result is a 4-digit encode of the coefficient (c=the */ -/* top 14 bits encoding 0-9999) and a 2-digit encode of the */ -/* exponent (e=the bottom 2 bits encoding 0-3) */ -/* */ -/* The resulting value is given by: */ -/* */ -/* v = -c * 10**(-e-3) */ -/* */ -/* where e and c are extracted from entry k = LNnn[x-10] */ -/* where x is truncated (NB) into the range 10 through 99, */ -/* and then c = k>>2 and e = k&3. */ -/* ------------------------------------------------------------------ */ -static const uShort LNnn[90] = { - 9016, 8652, 8316, 8008, 7724, 7456, 7208, - 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, - 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, - 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, - 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, - 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, - 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, - 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, - 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, - 10130, 6046, 20055}; - -/* ------------------------------------------------------------------ */ -/* decLnOp -- effect natural logarithm */ -/* */ -/* This computes C = ln(A) */ -/* */ -/* res is C, the result. C may be A */ -/* rhs is A */ -/* set is the context; note that rounding mode has no effect */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Notable cases: */ -/* A<0 -> Invalid */ -/* A=0 -> -Infinity (Exact) */ -/* A=+Infinity -> +Infinity (Exact) */ -/* A=1 exactly -> 0 (Exact) */ -/* */ -/* Restrictions (as for Exp): */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ -/* bounds or a zero. This is an internal routine, so these */ -/* restrictions are contractual and not enforced. */ -/* */ -/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ -/* almost always be correctly rounded, but may be up to 1 ulp in */ -/* error in rare cases. */ -/* ------------------------------------------------------------------ */ -/* The result is calculated using Newton's method, with each */ -/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ -/* Epperson 1989. */ -/* */ -/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ -/* This has to be calculated at the sum of the precision of x and the */ -/* working precision. */ -/* */ -/* Implementation notes: */ -/* */ -/* 1. This is separated out as decLnOp so it can be called from */ -/* other Mathematical functions (e.g., Log 10) with a wider range */ -/* than normal. In particular, it can handle the slightly wider */ -/* (+9+2) range needed by a power function. */ -/* */ -/* 2. The speed of this function is about 10x slower than exp, as */ -/* it typically needs 4-6 iterations for short numbers, and the */ -/* extra precision needed adds a squaring effect, twice. */ -/* */ -/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ -/* as these are common requests. ln(10) is used by log10(x). */ -/* */ -/* 4. An iteration might be saved by widening the LNnn table, and */ -/* would certainly save at least one if it were made ten times */ -/* bigger, too (for truncated fractions 0.100 through 0.999). */ -/* However, for most practical evaluations, at least four or five */ -/* iterations will be neede -- so this would only speed up by */ -/* 20-25% and that probably does not justify increasing the table */ -/* size. */ -/* */ -/* 5. The static buffers are larger than might be expected to allow */ -/* for calls from decNumberPower. */ -/* ------------------------------------------------------------------ */ -static decNumber *decLnOp(decNumber *res, const decNumber *rhs, - decContext *set, uInt *status) { - uInt ignore=0; /* working status accumulator */ - uInt needbytes; /* for space calculations */ - Int residue; /* rounding residue */ - Int r; /* rhs=f*10**r [see below] */ - Int p; /* working precision */ - Int pp; /* precision for iteration */ - Int t; /* work */ - - /* buffers for a (accumulator, typically precision+2) and b */ - /* (adjustment calculator, same size) */ - decNumber bufa[D2N(DECBUFFER+12)]; - decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ - decNumber *a=bufa; /* accumulator/work */ - decNumber bufb[D2N(DECBUFFER*2+2)]; - decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */ - decNumber *b=bufb; /* adjustment/work */ - - decNumber numone; /* constant 1 */ - decNumber cmp; /* work */ - decContext aset, bset; /* working contexts */ - - #if DECCHECK - Int iterations=0; /* for later sanity check */ - if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - if (SPECIALARG) { /* handle infinities and NaNs */ - if (decNumberIsInfinite(rhs)) { /* an infinity */ - if (decNumberIsNegative(rhs)) /* -Infinity -> error */ - *status|=DEC_Invalid_operation; - else decNumberCopy(res, rhs); /* +Infinity -> self */ - } - else decNaNs(res, rhs, NULL, set, status); /* a NaN */ - break;} - - if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */ - decNumberZero(res); /* make clean */ - res->bits=DECINF|DECNEG; /* set - infinity */ - break;} /* [no status to set] */ - - /* Non-zero negatives are bad... */ - if (decNumberIsNegative(rhs)) { /* -x -> error */ - *status|=DEC_Invalid_operation; - break;} - - /* Here, rhs is positive, finite, and in range */ - - /* lookaside fastpath code for ln(2) and ln(10) at common lengths */ - if (rhs->exponent==0 && set->digits<=40) { - #if DECDPUN==1 - if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */ - #else - if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */ - #endif - aset=*set; aset.round=DEC_ROUND_HALF_EVEN; - #define LN10 "2.302585092994045684017991454684364207601" - decNumberFromString(res, LN10, &aset); - *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */ - break;} - if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */ - aset=*set; aset.round=DEC_ROUND_HALF_EVEN; - #define LN2 "0.6931471805599453094172321214581765680755" - decNumberFromString(res, LN2, &aset); - *status|=(DEC_Inexact | DEC_Rounded); - break;} - } /* integer and short */ - - /* Determine the working precision. This is normally the */ - /* requested precision + 2, with a minimum of 9. However, if */ - /* the rhs is 'over-precise' then allow for all its digits to */ - /* potentially participate (consider an rhs where all the excess */ - /* digits are 9s) so in this case use rhs->digits+2. */ - p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; - - /* Allocate space for the accumulator and the high-precision */ - /* adjustment calculator, if necessary. The accumulator must */ - /* be able to hold p digits, and the adjustment up to */ - /* rhs->digits+p digits. They are also made big enough for 16 */ - /* digits so that they can be used for calculating the initial */ - /* estimate. */ - needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); - if (needbytes>sizeof(bufa)) { /* need malloc space */ - allocbufa=(decNumber *)malloc(needbytes); - if (allocbufa==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - a=allocbufa; /* use the allocated space */ - } - pp=p+rhs->digits; - needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); - if (needbytes>sizeof(bufb)) { /* need malloc space */ - allocbufb=(decNumber *)malloc(needbytes); - if (allocbufb==NULL) { /* hopeless -- abandon */ - *status|=DEC_Insufficient_storage; - break;} - b=allocbufb; /* use the allocated space */ - } - - /* Prepare an initial estimate in acc. Calculate this by */ - /* considering the coefficient of x to be a normalized fraction, */ - /* f, with the decimal point at far left and multiplied by */ - /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */ - /* ln(x) = ln(f) + ln(10)*r */ - /* Get the initial estimate for ln(f) from a small lookup */ - /* table (see above) indexed by the first two digits of f, */ - /* truncated. */ - - decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */ - r=rhs->exponent+rhs->digits; /* 'normalised' exponent */ - decNumberFromInt32(a, r); /* a=r */ - decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */ - b->exponent=-6; /* .. */ - decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */ - /* now get top two digits of rhs into b by simple truncate and */ - /* force to integer */ - residue=0; /* (no residue) */ - aset.digits=2; aset.round=DEC_ROUND_DOWN; - decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */ - b->exponent=0; /* make integer */ - t=decGetInt(b); /* [cannot fail] */ - if (t<10) t=X10(t); /* adjust single-digit b */ - t=LNnn[t-10]; /* look up ln(b) */ - decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */ - b->exponent=-(t&3)-3; /* set exponent */ - b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */ - aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */ - decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */ - /* the initial estimate is now in a, with up to 4 digits correct. */ - /* When rhs is at or near Nmax the estimate will be low, so we */ - /* will approach it from below, avoiding overflow when calling exp. */ - - decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */ - - /* accumulator bounds are as requested (could underflow, but */ - /* cannot overflow) */ - aset.emax=set->emax; - aset.emin=set->emin; - aset.clamp=0; /* no concrete format */ - /* set up a context to be used for the multiply and subtract */ - bset=aset; - bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */ - bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */ - /* [see decExpOp call below] */ - /* for each iteration double the number of digits to calculate, */ - /* up to a maximum of p */ - pp=9; /* initial precision */ - /* [initially 9 as then the sequence starts 7+2, 16+2, and */ - /* 34+2, which is ideal for standard-sized numbers] */ - aset.digits=pp; /* working context */ - bset.digits=pp+rhs->digits; /* wider context */ - for (;;) { /* iterate */ - #if DECCHECK - iterations++; - if (iterations>24) break; /* consider 9 * 2**24 */ - #endif - /* calculate the adjustment (exp(-a)*x-1) into b. This is a */ - /* catastrophic subtraction but it really is the difference */ - /* from 1 that is of interest. */ - /* Use the internal entry point to Exp as it allows the double */ - /* range for calculating exp(-a) when a is the tiniest subnormal. */ - a->bits^=DECNEG; /* make -a */ - decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */ - a->bits^=DECNEG; /* restore sign of a */ - /* now multiply by rhs and subtract 1, at the wider precision */ - decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */ - decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */ - - /* the iteration ends when the adjustment cannot affect the */ - /* result by >=0.5 ulp (at the requested digits), which */ - /* is when its value is smaller than the accumulator by */ - /* set->digits+1 digits (or it is zero) -- this is a looser */ - /* requirement than for Exp because all that happens to the */ - /* accumulator after this is the final rounding (but note that */ - /* there must also be full precision in a, or a=0). */ - - if (decNumberIsZero(b) || - (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { - if (a->digits==p) break; - if (decNumberIsZero(a)) { - decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */ - if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */ - else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */ - break; - } - /* force padding if adjustment has gone to 0 before full length */ - if (decNumberIsZero(b)) b->exponent=a->exponent-p; - } - - /* not done yet ... */ - decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */ - if (pp==p) continue; /* precision is at maximum */ - /* lengthen the next calculation */ - pp=pp*2; /* double precision */ - if (pp>p) pp=p; /* clamp to maximum */ - aset.digits=pp; /* working context */ - bset.digits=pp+rhs->digits; /* wider context */ - } /* Newton's iteration */ - - #if DECCHECK - /* just a sanity check; remove the test to show always */ - if (iterations>24) - printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", - iterations, *status, p, rhs->digits); - #endif - - /* Copy and round the result to res */ - residue=1; /* indicate dirt to right */ - if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ - aset.digits=set->digits; /* [use default rounding] */ - decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ - decFinish(res, set, &residue, status); /* cleanup/set flags */ - } while(0); /* end protected */ - - if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ - if (allocbufb!=NULL) free(allocbufb); /* .. */ - /* [status is handled by caller] */ - return res; - } /* decLnOp */ - -/* ------------------------------------------------------------------ */ -/* decQuantizeOp -- force exponent to requested value */ -/* */ -/* This computes C = op(A, B), where op adjusts the coefficient */ -/* of C (by rounding or shifting) such that the exponent (-scale) */ -/* of C has the value B or matches the exponent of B. */ -/* The numerical value of C will equal A, except for the effects of */ -/* any rounding that occurred. */ -/* */ -/* res is C, the result. C may be A or B */ -/* lhs is A, the number to adjust */ -/* rhs is B, the requested exponent */ -/* set is the context */ -/* quant is 1 for quantize or 0 for rescale */ -/* status is the status accumulator (this can be called without */ -/* risk of control loss) */ -/* */ -/* C must have space for set->digits digits. */ -/* */ -/* Unless there is an error or the result is infinite, the exponent */ -/* after the operation is guaranteed to be that requested. */ -/* ------------------------------------------------------------------ */ -static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - Flag quant, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ - decNumber *allocrhs=NULL; /* .., rhs */ - #endif - const decNumber *inrhs=rhs; /* save original rhs */ - Int reqdigits=set->digits; /* requested DIGITS */ - Int reqexp; /* requested exponent [-scale] */ - Int residue=0; /* rounding residue */ - Int etiny=set->emin-(reqdigits-1); - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operands and set lostDigits status, as needed */ - if (lhs->digits>reqdigits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) break; - lhs=alloclhs; - } - if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */ - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) break; - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* Handle special values */ - if (SPECIALARGS) { - /* NaNs get usual processing */ - if (SPECIALARGS & (DECSNAN | DECNAN)) - decNaNs(res, lhs, rhs, set, status); - /* one infinity but not both is bad */ - else if ((lhs->bits ^ rhs->bits) & DECINF) - *status|=DEC_Invalid_operation; - /* both infinity: return lhs */ - else decNumberCopy(res, lhs); /* [nop if in place] */ - break; - } - - /* set requested exponent */ - if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */ - else { /* rescale -- use value of rhs */ - /* Original rhs must be an integer that fits and is in range, */ - /* which could be from -1999999997 to +999999999, thanks to */ - /* subnormals */ - reqexp=decGetInt(inrhs); /* [cannot fail] */ - } - - #if DECSUBSET - if (!set->extended) etiny=set->emin; /* no subnormals */ - #endif - - if (reqexp==BADINT /* bad (rescale only) or .. */ - || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */ - || (reqexpset->emax)) { /* > emax */ - *status|=DEC_Invalid_operation; - break;} - - /* the RHS has been processed, so it can be overwritten now if necessary */ - if (ISZERO(lhs)) { /* zero coefficient unchanged */ - decNumberCopy(res, lhs); /* [nop if in place] */ - res->exponent=reqexp; /* .. just set exponent */ - #if DECSUBSET - if (!set->extended) res->bits=0; /* subset specification; no -0 */ - #endif - } - else { /* non-zero lhs */ - Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */ - /* if adjusted coefficient will definitely not fit, give up now */ - if ((lhs->digits-adjust)>reqdigits) { - *status|=DEC_Invalid_operation; - break; - } - - if (adjust>0) { /* increasing exponent */ - /* this will decrease the length of the coefficient by adjust */ - /* digits, and must round as it does so */ - decContext workset; /* work */ - workset=*set; /* clone rounding, etc. */ - workset.digits=lhs->digits-adjust; /* set requested length */ - /* [note that the latter can be <1, here] */ - decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */ - decApplyRound(res, &workset, residue, status); /* .. and round */ - residue=0; /* [used] */ - /* If just rounded a 999s case, exponent will be off by one; */ - /* adjust back (after checking space), if so. */ - if (res->exponent>reqexp) { - /* re-check needed, e.g., for quantize(0.9999, 0.001) under */ - /* set->digits==3 */ - if (res->digits==reqdigits) { /* cannot shift by 1 */ - *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */ - *status|=DEC_Invalid_operation; - break; - } - res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */ - res->exponent--; /* (re)adjust the exponent. */ - } - #if DECSUBSET - if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */ - #endif - } /* increase */ - else /* adjust<=0 */ { /* decreasing or = exponent */ - /* this will increase the length of the coefficient by -adjust */ - /* digits, by adding zero or more trailing zeros; this is */ - /* already checked for fit, above */ - decNumberCopy(res, lhs); /* [it will fit] */ - /* if padding needed (adjust<0), add it now... */ - if (adjust<0) { - res->digits=decShiftToMost(res->lsu, res->digits, -adjust); - res->exponent+=adjust; /* adjust the exponent */ - } - } /* decrease */ - } /* non-zero */ - - /* Check for overflow [do not use Finalize in this case, as an */ - /* overflow here is a "don't fit" situation] */ - if (res->exponent>set->emax-res->digits+1) { /* too big */ - *status|=DEC_Invalid_operation; - break; - } - else { - decFinalize(res, set, &residue, status); /* set subnormal flags */ - *status&=~DEC_Underflow; /* suppress Underflow [754r] */ - } - } while(0); /* end protected */ - - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */ - if (alloclhs!=NULL) free(alloclhs); /* .. */ - #endif - return res; - } /* decQuantizeOp */ - -/* ------------------------------------------------------------------ */ -/* decCompareOp -- compare, min, or max two Numbers */ -/* */ -/* This computes C = A ? B and carries out one of four operations: */ -/* COMPARE -- returns the signum (as a number) giving the */ -/* result of a comparison unless one or both */ -/* operands is a NaN (in which case a NaN results) */ -/* COMPSIG -- as COMPARE except that a quiet NaN raises */ -/* Invalid operation. */ -/* COMPMAX -- returns the larger of the operands, using the */ -/* 754r maxnum operation */ -/* COMPMAXMAG -- ditto, comparing absolute values */ -/* COMPMIN -- the 754r minnum operation */ -/* COMPMINMAG -- ditto, comparing absolute values */ -/* COMTOTAL -- returns the signum (as a number) giving the */ -/* result of a comparison using 754r total ordering */ -/* */ -/* res is C, the result. C may be A and/or B (e.g., X=X?X) */ -/* lhs is A */ -/* rhs is B */ -/* set is the context */ -/* op is the operation flag */ -/* status is the usual accumulator */ -/* */ -/* C must have space for one digit for COMPARE or set->digits for */ -/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ -/* ------------------------------------------------------------------ */ -/* The emphasis here is on speed for common cases, and avoiding */ -/* coefficient comparison if possible. */ -/* ------------------------------------------------------------------ */ -static decNumber *decCompareOp(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - Flag op, uInt *status) { - #if DECSUBSET - decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ - decNumber *allocrhs=NULL; /* .., rhs */ - #endif - Int result=0; /* default result value */ - uByte merged; /* work */ - - #if DECCHECK - if (decCheckOperands(res, lhs, rhs, set)) return res; - #endif - - do { /* protect allocated storage */ - #if DECSUBSET - if (!set->extended) { - /* reduce operands and set lostDigits status, as needed */ - if (lhs->digits>set->digits) { - alloclhs=decRoundOperand(lhs, set, status); - if (alloclhs==NULL) {result=BADINT; break;} - lhs=alloclhs; - } - if (rhs->digits>set->digits) { - allocrhs=decRoundOperand(rhs, set, status); - if (allocrhs==NULL) {result=BADINT; break;} - rhs=allocrhs; - } - } - #endif - /* [following code does not require input rounding] */ - - /* If total ordering then handle differing signs 'up front' */ - if (op==COMPTOTAL) { /* total ordering */ - if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { - result=-1; - break; - } - if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { - result=+1; - break; - } - } - - /* handle NaNs specially; let infinities drop through */ - /* This assumes sNaN (even just one) leads to NaN. */ - merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); - if (merged) { /* a NaN bit set */ - if (op==COMPARE); /* result will be NaN */ - else if (op==COMPSIG) /* treat qNaN as sNaN */ - *status|=DEC_Invalid_operation | DEC_sNaN; - else if (op==COMPTOTAL) { /* total ordering, always finite */ - /* signs are known to be the same; compute the ordering here */ - /* as if the signs are both positive, then invert for negatives */ - if (!decNumberIsNaN(lhs)) result=-1; - else if (!decNumberIsNaN(rhs)) result=+1; - /* here if both NaNs */ - else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; - else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; - else { /* both NaN or both sNaN */ - /* now it just depends on the payload */ - result=decUnitCompare(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), 0); - /* [Error not possible, as these are 'aligned'] */ - } /* both same NaNs */ - if (decNumberIsNegative(lhs)) result=-result; - break; - } /* total order */ - - else if (merged & DECSNAN); /* sNaN -> qNaN */ - else { /* here if MIN or MAX and one or two quiet NaNs */ - /* min or max -- 754r rules ignore single NaN */ - if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { - /* just one NaN; force choice to be the non-NaN operand */ - op=COMPMAX; - if (lhs->bits & DECNAN) result=-1; /* pick rhs */ - else result=+1; /* pick lhs */ - break; - } - } /* max or min */ - op=COMPNAN; /* use special path */ - decNaNs(res, lhs, rhs, set, status); /* propagate NaN */ - break; - } - /* have numbers */ - if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); - else result=decCompare(lhs, rhs, 0); /* sign matters */ - } while(0); /* end protected */ - - if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */ - else { - if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */ - if (op==COMPTOTAL && result==0) { - /* operands are numerically equal or same NaN (and same sign, */ - /* tested first); if identical, leave result 0 */ - if (lhs->exponent!=rhs->exponent) { - if (lhs->exponentexponent) result=-1; - else result=+1; - if (decNumberIsNegative(lhs)) result=-result; - } /* lexp!=rexp */ - } /* total-order by exponent */ - decNumberZero(res); /* [always a valid result] */ - if (result!=0) { /* must be -1 or +1 */ - *res->lsu=1; - if (result<0) res->bits=DECNEG; - } - } - else if (op==COMPNAN); /* special, drop through */ - else { /* MAX or MIN, non-NaN result */ - Int residue=0; /* rounding accumulator */ - /* choose the operand for the result */ - const decNumber *choice; - if (result==0) { /* operands are numerically equal */ - /* choose according to sign then exponent (see 754r) */ - uByte slhs=(lhs->bits & DECNEG); - uByte srhs=(rhs->bits & DECNEG); - #if DECSUBSET - if (!set->extended) { /* subset: force left-hand */ - op=COMPMAX; - result=+1; - } - else - #endif - if (slhs!=srhs) { /* signs differ */ - if (slhs) result=-1; /* rhs is max */ - else result=+1; /* lhs is max */ - } - else if (slhs && srhs) { /* both negative */ - if (lhs->exponentexponent) result=+1; - else result=-1; - /* [if equal, use lhs, technically identical] */ - } - else { /* both positive */ - if (lhs->exponent>rhs->exponent) result=+1; - else result=-1; - /* [ditto] */ - } - } /* numerically equal */ - /* here result will be non-0; reverse if looking for MIN */ - if (op==COMPMIN || op==COMPMINMAG) result=-result; - choice=(result>0 ? lhs : rhs); /* choose */ - /* copy chosen to result, rounding if need be */ - decCopyFit(res, choice, set, &residue, status); - decFinish(res, set, &residue, status); - } - } - #if DECSUBSET - if (allocrhs!=NULL) free(allocrhs); /* free any storage used */ - if (alloclhs!=NULL) free(alloclhs); /* .. */ - #endif - return res; - } /* decCompareOp */ - -/* ------------------------------------------------------------------ */ -/* decCompare -- compare two decNumbers by numerical value */ -/* */ -/* This routine compares A ? B without altering them. */ -/* */ -/* Arg1 is A, a decNumber which is not a NaN */ -/* Arg2 is B, a decNumber which is not a NaN */ -/* Arg3 is 1 for a sign-independent compare, 0 otherwise */ -/* */ -/* returns -1, 0, or 1 for AB, or BADINT if failure */ -/* (the only possible failure is an allocation error) */ -/* ------------------------------------------------------------------ */ -static Int decCompare(const decNumber *lhs, const decNumber *rhs, - Flag abs) { - Int result; /* result value */ - Int sigr; /* rhs signum */ - Int compare; /* work */ - - result=1; /* assume signum(lhs) */ - if (ISZERO(lhs)) result=0; - if (abs) { - if (ISZERO(rhs)) return result; /* LHS wins or both 0 */ - /* RHS is non-zero */ - if (result==0) return -1; /* LHS is 0; RHS wins */ - /* [here, both non-zero, result=1] */ - } - else { /* signs matter */ - if (result && decNumberIsNegative(lhs)) result=-1; - sigr=1; /* compute signum(rhs) */ - if (ISZERO(rhs)) sigr=0; - else if (decNumberIsNegative(rhs)) sigr=-1; - if (result > sigr) return +1; /* L > R, return 1 */ - if (result < sigr) return -1; /* L < R, return -1 */ - if (result==0) return 0; /* both 0 */ - } - - /* signums are the same; both are non-zero */ - if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */ - if (decNumberIsInfinite(rhs)) { - if (decNumberIsInfinite(lhs)) result=0;/* both infinite */ - else result=-result; /* only rhs infinite */ - } - return result; - } - /* must compare the coefficients, allowing for exponents */ - if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */ - /* swap sides, and sign */ - const decNumber *temp=lhs; - lhs=rhs; - rhs=temp; - result=-result; - } - compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), - rhs->lsu, D2U(rhs->digits), - rhs->exponent-lhs->exponent); - if (compare!=BADINT) compare*=result; /* comparison succeeded */ - return compare; - } /* decCompare */ - -/* ------------------------------------------------------------------ */ -/* decUnitCompare -- compare two >=0 integers in Unit arrays */ -/* */ -/* This routine compares A ? B*10**E where A and B are unit arrays */ -/* A is a plain integer */ -/* B has an exponent of E (which must be non-negative) */ -/* */ -/* Arg1 is A first Unit (lsu) */ -/* Arg2 is A length in Units */ -/* Arg3 is B first Unit (lsu) */ -/* Arg4 is B length in Units */ -/* Arg5 is E (0 if the units are aligned) */ -/* */ -/* returns -1, 0, or 1 for AB, or BADINT if failure */ -/* (the only possible failure is an allocation error, which can */ -/* only occur if E!=0) */ -/* ------------------------------------------------------------------ */ -static Int decUnitCompare(const Unit *a, Int alength, - const Unit *b, Int blength, Int exp) { - Unit *acc; /* accumulator for result */ - Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */ - Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ - Int accunits, need; /* units in use or needed for acc */ - const Unit *l, *r, *u; /* work */ - Int expunits, exprem, result; /* .. */ - - if (exp==0) { /* aligned; fastpath */ - if (alength>blength) return 1; - if (alength=a; l--, r--) { - if (*l>*r) return 1; - if (*l<*r) return -1; - } - return 0; /* all units match */ - } /* aligned */ - - /* Unaligned. If one is >1 unit longer than the other, padded */ - /* approximately, then can return easily */ - if (alength>blength+(Int)D2U(exp)) return 1; - if (alength+1sizeof(accbuff)) { - allocacc=(Unit *)malloc(need*sizeof(Unit)); - if (allocacc==NULL) return BADINT; /* hopeless -- abandon */ - acc=allocacc; - } - /* Calculate units and remainder from exponent. */ - expunits=exp/DECDPUN; - exprem=exp%DECDPUN; - /* subtract [A+B*(-m)] */ - accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, - -(Int)powers[exprem]); - /* [UnitAddSub result may have leading zeros, even on zero] */ - if (accunits<0) result=-1; /* negative result */ - else { /* non-negative result */ - /* check units of the result before freeing any storage */ - for (u=acc; u=0 integers in Unit arrays */ -/* */ -/* This routine performs the calculation: */ -/* */ -/* C=A+(B*M) */ -/* */ -/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ -/* */ -/* A may be shorter or longer than B. */ -/* */ -/* Leading zeros are not removed after a calculation. The result is */ -/* either the same length as the longer of A and B (adding any */ -/* shift), or one Unit longer than that (if a Unit carry occurred). */ -/* */ -/* A and B content are not altered unless C is also A or B. */ -/* C may be the same array as A or B, but only if no zero padding is */ -/* requested (that is, C may be B only if bshift==0). */ -/* C is filled from the lsu; only those units necessary to complete */ -/* the calculation are referenced. */ -/* */ -/* Arg1 is A first Unit (lsu) */ -/* Arg2 is A length in Units */ -/* Arg3 is B first Unit (lsu) */ -/* Arg4 is B length in Units */ -/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ -/* Arg6 is C first Unit (lsu) */ -/* Arg7 is M, the multiplier */ -/* */ -/* returns the count of Units written to C, which will be non-zero */ -/* and negated if the result is negative. That is, the sign of the */ -/* returned Int is the sign of the result (positive for zero) and */ -/* the absolute value of the Int is the count of Units. */ -/* */ -/* It is the caller's responsibility to make sure that C size is */ -/* safe, allowing space if necessary for a one-Unit carry. */ -/* */ -/* This routine is severely performance-critical; *any* change here */ -/* must be measured (timed) to assure no performance degradation. */ -/* In particular, trickery here tends to be counter-productive, as */ -/* increased complexity of code hurts register optimizations on */ -/* register-poor architectures. Avoiding divisions is nearly */ -/* always a Good Idea, however. */ -/* */ -/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ -/* (IBM Warwick, UK) for some of the ideas used in this routine. */ -/* ------------------------------------------------------------------ */ -static Int decUnitAddSub(const Unit *a, Int alength, - const Unit *b, Int blength, Int bshift, - Unit *c, Int m) { - const Unit *alsu=a; /* A lsu [need to remember it] */ - Unit *clsu=c; /* C ditto */ - Unit *minC; /* low water mark for C */ - Unit *maxC; /* high water mark for C */ - eInt carry=0; /* carry integer (could be Long) */ - Int add; /* work */ - #if DECDPUN<=4 /* myriadal, millenary, etc. */ - Int est; /* estimated quotient */ - #endif - - #if DECTRACE - if (alength<1 || blength<1) - printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); - #endif - - maxC=c+alength; /* A is usually the longer */ - minC=c+blength; /* .. and B the shorter */ - if (bshift!=0) { /* B is shifted; low As copy across */ - minC+=bshift; - /* if in place [common], skip copy unless there's a gap [rare] */ - if (a==c && bshift<=alength) { - c+=bshift; - a+=bshift; - } - else for (; cmaxC) { /* swap */ - Unit *hold=minC; - minC=maxC; - maxC=hold; - } - - /* For speed, do the addition as two loops; the first where both A */ - /* and B contribute, and the second (if necessary) where only one or */ - /* other of the numbers contribute. */ - /* Carry handling is the same (i.e., duplicated) in each case. */ - for (; c=0) { - est=(((ueInt)carry>>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* likely quotient [89%] */ - if (*c>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - if (*c=0) { - est=(((ueInt)carry>>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* likely quotient [99%] */ - if (*c>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - if (*c=0) { - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* quotient */ - continue; - } - /* negative case */ - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - #else - /* remainder operator is undefined if negative, so must test */ - if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */ - *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */ - carry=1; - continue; - } - if (carry>=0) { - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1); - continue; - } - /* negative case */ - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); - #endif - } /* c */ - - /* now may have one or other to complete */ - /* [pretest to avoid loop setup/shutdown] */ - if (cDECDPUNMAX */ - #if DECDPUN==4 /* use divide-by-multiply */ - if (carry>=0) { - est=(((ueInt)carry>>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* likely quotient [79.7%] */ - if (*c>11)*53687)>>18; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - if (*c=0) { - est=(((ueInt)carry>>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* likely quotient [99%] */ - if (*c>3)*16777)>>21; - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - if (*c=0) { - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ - carry=est; /* quotient */ - continue; - } - /* negative case */ - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ - est=QUOT10(carry, DECDPUN); - *c=(Unit)(carry-est*(DECDPUNMAX+1)); - carry=est-(DECDPUNMAX+1); /* correctly negative */ - #else - if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */ - *c=(Unit)(carry-(DECDPUNMAX+1)); - carry=1; - continue; - } - /* remainder operator is undefined if negative, so must test */ - if (carry>=0) { - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1); - continue; - } - /* negative case */ - carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ - *c=(Unit)(carry%(DECDPUNMAX+1)); - carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); - #endif - } /* c */ - - /* OK, all A and B processed; might still have carry or borrow */ - /* return number of Units in the result, negated if a borrow */ - if (carry==0) return c-clsu; /* no carry, so no more to do */ - if (carry>0) { /* positive carry */ - *c=(Unit)carry; /* place as new unit */ - c++; /* .. */ - return c-clsu; - } - /* -ve carry: it's a borrow; complement needed */ - add=1; /* temporary carry... */ - for (c=clsu; c current Unit */ - - #if DECCHECK - if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; - #endif - - *dropped=0; /* assume no zeros dropped */ - if ((dn->bits & DECSPECIAL) /* fast exit if special .. */ - || (*dn->lsu & 0x01)) return dn; /* .. or odd */ - if (ISZERO(dn)) { /* .. or 0 */ - dn->exponent=0; /* (sign is preserved) */ - return dn; - } - - /* have a finite number which is even */ - exp=dn->exponent; - cut=1; /* digit (1-DECDPUN) in Unit */ - up=dn->lsu; /* -> current Unit */ - for (d=0; ddigits-1; d++) { /* [don't strip the final digit] */ - /* slice by powers */ - #if DECDPUN<=4 - uInt quot=QUOT10(*up, cut); - if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */ - #else - if (*up%powers[cut]!=0) break; /* found non-0 digit */ - #endif - /* have a trailing 0 */ - if (!all) { /* trimming */ - /* [if exp>0 then all trailing 0s are significant for trim] */ - if (exp<=0) { /* if digit might be significant */ - if (exp==0) break; /* then quit */ - exp++; /* next digit might be significant */ - } - } - cut++; /* next power */ - if (cut>DECDPUN) { /* need new Unit */ - up++; - cut=1; - } - } /* d */ - if (d==0) return dn; /* none to drop */ - - /* may need to limit drop if clamping */ - if (set->clamp) { - Int maxd=set->emax-set->digits+1-dn->exponent; - if (maxd<=0) return dn; /* nothing possible */ - if (d>maxd) d=maxd; - } - - /* effect the drop */ - decShiftToLeast(dn->lsu, D2U(dn->digits), d); - dn->exponent+=d; /* maintain numerical value */ - dn->digits-=d; /* new length */ - *dropped=d; /* report the count */ - return dn; - } /* decTrim */ - -/* ------------------------------------------------------------------ */ -/* decReverse -- reverse a Unit array in place */ -/* */ -/* ulo is the start of the array */ -/* uhi is the end of the array (highest Unit to include) */ -/* */ -/* The units ulo through uhi are reversed in place (if the number */ -/* of units is odd, the middle one is untouched). Note that the */ -/* digit(s) in each unit are unaffected. */ -/* ------------------------------------------------------------------ */ -static void decReverse(Unit *ulo, Unit *uhi) { - Unit temp; - for (; ulo=uar; source--, target--) *target=*source; - } - else { - first=uar+D2U(digits+shift)-1; /* where msu of source will end up */ - for (; source>=uar; source--, target--) { - /* split the source Unit and accumulate remainder for next */ - #if DECDPUN<=4 - uInt quot=QUOT10(*source, cut); - uInt rem=*source-quot*powers[cut]; - next+=quot; - #else - uInt rem=*source%powers[cut]; - next+=*source/powers[cut]; - #endif - if (target<=first) *target=(Unit)next; /* write to target iff valid */ - next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */ - } - } /* shift-move */ - - /* propagate any partial unit to one below and clear the rest */ - for (; target>=uar; target--) { - *target=(Unit)next; - next=0; - } - return digits+shift; - } /* decShiftToMost */ - -/* ------------------------------------------------------------------ */ -/* decShiftToLeast -- shift digits in array towards least significant */ -/* */ -/* uar is the array */ -/* units is length of the array, in units */ -/* shift is the number of digits to remove from the lsu end; it */ -/* must be zero or positive and <= than units*DECDPUN. */ -/* */ -/* returns the new length of the integer in the array, in units */ -/* */ -/* Removed digits are discarded (lost). Units not required to hold */ -/* the final result are unchanged. */ -/* ------------------------------------------------------------------ */ -static Int decShiftToLeast(Unit *uar, Int units, Int shift) { - Unit *target, *up; /* work */ - Int cut, count; /* work */ - Int quot, rem; /* for division */ - - if (shift==0) return units; /* [fastpath] nothing to do */ - if (shift==units*DECDPUN) { /* [fastpath] little to do */ - *uar=0; /* all digits cleared gives zero */ - return 1; /* leaves just the one */ - } - - target=uar; /* both paths */ - cut=MSUDIGITS(shift); - if (cut==DECDPUN) { /* unit-boundary case; easy */ - up=uar+D2U(shift); - for (; updigits is > set->digits) */ -/* set is the relevant context */ -/* status is the status accumulator */ -/* */ -/* returns an allocated decNumber with the rounded result. */ -/* */ -/* lostDigits and other status may be set by this. */ -/* */ -/* Since the input is an operand, it must not be modified. */ -/* Instead, return an allocated decNumber, rounded as required. */ -/* It is the caller's responsibility to free the allocated storage. */ -/* */ -/* If no storage is available then the result cannot be used, so NULL */ -/* is returned. */ -/* ------------------------------------------------------------------ */ -static decNumber *decRoundOperand(const decNumber *dn, decContext *set, - uInt *status) { - decNumber *res; /* result structure */ - uInt newstatus=0; /* status from round */ - Int residue=0; /* rounding accumulator */ - - /* Allocate storage for the returned decNumber, big enough for the */ - /* length specified by the context */ - res=(decNumber *)malloc(sizeof(decNumber) - +(D2U(set->digits)-1)*sizeof(Unit)); - if (res==NULL) { - *status|=DEC_Insufficient_storage; - return NULL; - } - decCopyFit(res, dn, set, &residue, &newstatus); - decApplyRound(res, set, residue, &newstatus); - - /* If that set Inexact then "lost digits" is raised... */ - if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; - *status|=newstatus; - return res; - } /* decRoundOperand */ -#endif - -/* ------------------------------------------------------------------ */ -/* decCopyFit -- copy a number, truncating the coefficient if needed */ -/* */ -/* dest is the target decNumber */ -/* src is the source decNumber */ -/* set is the context [used for length (digits) and rounding mode] */ -/* residue is the residue accumulator */ -/* status contains the current status to be updated */ -/* */ -/* (dest==src is allowed and will be a no-op if fits) */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decCopyFit(decNumber *dest, const decNumber *src, - decContext *set, Int *residue, uInt *status) { - dest->bits=src->bits; - dest->exponent=src->exponent; - decSetCoeff(dest, set, src->lsu, src->digits, residue, status); - } /* decCopyFit */ - -/* ------------------------------------------------------------------ */ -/* decSetCoeff -- set the coefficient of a number */ -/* */ -/* dn is the number whose coefficient array is to be set. */ -/* It must have space for set->digits digits */ -/* set is the context [for size] */ -/* lsu -> lsu of the source coefficient [may be dn->lsu] */ -/* len is digits in the source coefficient [may be dn->digits] */ -/* residue is the residue accumulator. This has values as in */ -/* decApplyRound, and will be unchanged unless the */ -/* target size is less than len. In this case, the */ -/* coefficient is truncated and the residue is updated to */ -/* reflect the previous residue and the dropped digits. */ -/* status is the status accumulator, as usual */ -/* */ -/* The coefficient may already be in the number, or it can be an */ -/* external intermediate array. If it is in the number, lsu must == */ -/* dn->lsu and len must == dn->digits. */ -/* */ -/* Note that the coefficient length (len) may be < set->digits, and */ -/* in this case this merely copies the coefficient (or is a no-op */ -/* if dn->lsu==lsu). */ -/* */ -/* Note also that (only internally, from decQuantizeOp and */ -/* decSetSubnormal) the value of set->digits may be less than one, */ -/* indicating a round to left. This routine handles that case */ -/* correctly; caller ensures space. */ -/* */ -/* dn->digits, dn->lsu (and as required), and dn->exponent are */ -/* updated as necessary. dn->bits (sign) is unchanged. */ -/* */ -/* DEC_Rounded status is set if any digits are discarded. */ -/* DEC_Inexact status is set if any non-zero digits are discarded, or */ -/* incoming residue was non-0 (implies rounded) */ -/* ------------------------------------------------------------------ */ -/* mapping array: maps 0-9 to canonical residues, so that a residue */ -/* can be adjusted in the range [-1, +1] and achieve correct rounding */ -/* 0 1 2 3 4 5 6 7 8 9 */ -static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; -static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, - Int len, Int *residue, uInt *status) { - Int discard; /* number of digits to discard */ - uInt cut; /* cut point in Unit */ - const Unit *up; /* work */ - Unit *target; /* .. */ - Int count; /* .. */ - #if DECDPUN<=4 - uInt temp; /* .. */ - #endif - - discard=len-set->digits; /* digits to discard */ - if (discard<=0) { /* no digits are being discarded */ - if (dn->lsu!=lsu) { /* copy needed */ - /* copy the coefficient array to the result number; no shift needed */ - count=len; /* avoids D2U */ - up=lsu; - for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) - *target=*up; - dn->digits=len; /* set the new length */ - } - /* dn->exponent and residue are unchanged, record any inexactitude */ - if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); - return; - } - - /* some digits must be discarded ... */ - dn->exponent+=discard; /* maintain numerical value */ - *status|=DEC_Rounded; /* accumulate Rounded status */ - if (*residue>1) *residue=1; /* previous residue now to right, so reduce */ - - if (discard>len) { /* everything, +1, is being discarded */ - /* guard digit is 0 */ - /* residue is all the number [NB could be all 0s] */ - if (*residue<=0) { /* not already positive */ - count=len; /* avoids D2U */ - for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */ - *residue=1; - break; /* no need to check any others */ - } - } - if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ - *dn->lsu=0; /* coefficient will now be 0 */ - dn->digits=1; /* .. */ - return; - } /* total discard */ - - /* partial discard [most common case] */ - /* here, at least the first (most significant) discarded digit exists */ - - /* spin up the number, noting residue during the spin, until get to */ - /* the Unit with the first discarded digit. When reach it, extract */ - /* it and remember its position */ - count=0; - for (up=lsu;; up++) { - count+=DECDPUN; - if (count>=discard) break; /* full ones all checked */ - if (*up!=0) *residue=1; - } /* up */ - - /* here up -> Unit with first discarded digit */ - cut=discard-(count-DECDPUN)-1; - if (cut==DECDPUN-1) { /* unit-boundary case (fast) */ - Unit half=(Unit)powers[DECDPUN]>>1; - /* set residue directly */ - if (*up>=half) { - if (*up>half) *residue=7; - else *residue+=5; /* add sticky bit */ - } - else { /* digits<=0) { /* special for Quantize/Subnormal :-( */ - *dn->lsu=0; /* .. result is 0 */ - dn->digits=1; /* .. */ - } - else { /* shift to least */ - count=set->digits; /* now digits to end up with */ - dn->digits=count; /* set the new length */ - up++; /* move to next */ - /* on unit boundary, so shift-down copy loop is simple */ - for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) - *target=*up; - } - } /* unit-boundary case */ - - else { /* discard digit is in low digit(s), and not top digit */ - uInt discard1; /* first discarded digit */ - uInt quot, rem; /* for divisions */ - if (cut==0) quot=*up; /* is at bottom of unit */ - else /* cut>0 */ { /* it's not at bottom of unit */ - #if DECDPUN<=4 - quot=QUOT10(*up, cut); - rem=*up-quot*powers[cut]; - #else - rem=*up%powers[cut]; - quot=*up/powers[cut]; - #endif - if (rem!=0) *residue=1; - } - /* discard digit is now at bottom of quot */ - #if DECDPUN<=4 - temp=(quot*6554)>>16; /* fast /10 */ - /* Vowels algorithm here not a win (9 instructions) */ - discard1=quot-X10(temp); - quot=temp; - #else - discard1=quot%10; - quot=quot/10; - #endif - /* here, discard1 is the guard digit, and residue is everything */ - /* else [use mapping array to accumulate residue safely] */ - *residue+=resmap[discard1]; - cut++; /* update cut */ - /* here: up -> Unit of the array with bottom digit */ - /* cut is the division point for each Unit */ - /* quot holds the uncut high-order digits for the current unit */ - if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ - *dn->lsu=0; /* .. result is 0 */ - dn->digits=1; /* .. */ - } - else { /* shift to least needed */ - count=set->digits; /* now digits to end up with */ - dn->digits=count; /* set the new length */ - /* shift-copy the coefficient array to the result number */ - for (target=dn->lsu; ; target++) { - *target=(Unit)quot; - count-=(DECDPUN-cut); - if (count<=0) break; - up++; - quot=*up; - #if DECDPUN<=4 - quot=QUOT10(quot, cut); - rem=*up-quot*powers[cut]; - #else - rem=quot%powers[cut]; - quot=quot/powers[cut]; - #endif - *target=(Unit)(*target+rem*powers[DECDPUN-cut]); - count-=cut; - if (count<=0) break; - } /* shift-copy loop */ - } /* shift to least */ - } /* not unit boundary */ - - if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ - return; - } /* decSetCoeff */ - -/* ------------------------------------------------------------------ */ -/* decApplyRound -- apply pending rounding to a number */ -/* */ -/* dn is the number, with space for set->digits digits */ -/* set is the context [for size and rounding mode] */ -/* residue indicates pending rounding, being any accumulated */ -/* guard and sticky information. It may be: */ -/* 6-9: rounding digit is >5 */ -/* 5: rounding digit is exactly half-way */ -/* 1-4: rounding digit is <5 and >0 */ -/* 0: the coefficient is exact */ -/* -1: as 1, but the hidden digits are subtractive, that */ -/* is, of the opposite sign to dn. In this case the */ -/* coefficient must be non-0. This case occurs when */ -/* subtracting a small number (which can be reduced to */ -/* a sticky bit); see decAddOp. */ -/* status is the status accumulator, as usual */ -/* */ -/* This routine applies rounding while keeping the length of the */ -/* coefficient constant. The exponent and status are unchanged */ -/* except if: */ -/* */ -/* -- the coefficient was increased and is all nines (in which */ -/* case Overflow could occur, and is handled directly here so */ -/* the caller does not need to re-test for overflow) */ -/* */ -/* -- the coefficient was decreased and becomes all nines (in which */ -/* case Underflow could occur, and is also handled directly). */ -/* */ -/* All fields in dn are updated as required. */ -/* */ -/* ------------------------------------------------------------------ */ -static void decApplyRound(decNumber *dn, decContext *set, Int residue, - uInt *status) { - Int bump; /* 1 if coefficient needs to be incremented */ - /* -1 if coefficient needs to be decremented */ - - if (residue==0) return; /* nothing to apply */ - - bump=0; /* assume a smooth ride */ - - /* now decide whether, and how, to round, depending on mode */ - switch (set->round) { - case DEC_ROUND_05UP: { /* round zero or five up (for reround) */ - /* This is the same as DEC_ROUND_DOWN unless there is a */ - /* positive residue and the lsd of dn is 0 or 5, in which case */ - /* it is bumped; when residue is <0, the number is therefore */ - /* bumped down unless the final digit was 1 or 6 (in which */ - /* case it is bumped down and then up -- a no-op) */ - Int lsd5=*dn->lsu%5; /* get lsd and quintate */ - if (residue<0 && lsd5!=1) bump=-1; - else if (residue>0 && lsd5==0) bump=1; - /* [bump==1 could be applied directly; use common path for clarity] */ - break;} /* r-05 */ - - case DEC_ROUND_DOWN: { - /* no change, except if negative residue */ - if (residue<0) bump=-1; - break;} /* r-d */ - - case DEC_ROUND_HALF_DOWN: { - if (residue>5) bump=1; - break;} /* r-h-d */ - - case DEC_ROUND_HALF_EVEN: { - if (residue>5) bump=1; /* >0.5 goes up */ - else if (residue==5) { /* exactly 0.5000... */ - /* 0.5 goes up iff [new] lsd is odd */ - if (*dn->lsu & 0x01) bump=1; - } - break;} /* r-h-e */ - - case DEC_ROUND_HALF_UP: { - if (residue>=5) bump=1; - break;} /* r-h-u */ - - case DEC_ROUND_UP: { - if (residue>0) bump=1; - break;} /* r-u */ - - case DEC_ROUND_CEILING: { - /* same as _UP for positive numbers, and as _DOWN for negatives */ - /* [negative residue cannot occur on 0] */ - if (decNumberIsNegative(dn)) { - if (residue<0) bump=-1; - } - else { - if (residue>0) bump=1; - } - break;} /* r-c */ - - case DEC_ROUND_FLOOR: { - /* same as _UP for negative numbers, and as _DOWN for positive */ - /* [negative residue cannot occur on 0] */ - if (!decNumberIsNegative(dn)) { - if (residue<0) bump=-1; - } - else { - if (residue>0) bump=1; - } - break;} /* r-f */ - - default: { /* e.g., DEC_ROUND_MAX */ - *status|=DEC_Invalid_context; - #if DECTRACE || (DECCHECK && DECVERB) - printf("Unknown rounding mode: %d\n", set->round); - #endif - break;} - } /* switch */ - - /* now bump the number, up or down, if need be */ - if (bump==0) return; /* no action required */ - - /* Simply use decUnitAddSub unless bumping up and the number is */ - /* all nines. In this special case set to 100... explicitly */ - /* and adjust the exponent by one (as otherwise could overflow */ - /* the array) */ - /* Similarly handle all-nines result if bumping down. */ - if (bump>0) { - Unit *up; /* work */ - uInt count=dn->digits; /* digits to be checked */ - for (up=dn->lsu; ; up++) { - if (count<=DECDPUN) { - /* this is the last Unit (the msu) */ - if (*up!=powers[count]-1) break; /* not still 9s */ - /* here if it, too, is all nines */ - *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */ - for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */ - dn->exponent++; /* and bump exponent */ - /* [which, very rarely, could cause Overflow...] */ - if ((dn->exponent+dn->digits)>set->emax+1) { - decSetOverflow(dn, set, status); - } - return; /* done */ - } - /* a full unit to check, with more to come */ - if (*up!=DECDPUNMAX) break; /* not still 9s */ - count-=DECDPUN; - } /* up */ - } /* bump>0 */ - else { /* -1 */ - /* here checking for a pre-bump of 1000... (leading 1, all */ - /* other digits zero) */ - Unit *up, *sup; /* work */ - uInt count=dn->digits; /* digits to be checked */ - for (up=dn->lsu; ; up++) { - if (count<=DECDPUN) { - /* this is the last Unit (the msu) */ - if (*up!=powers[count-1]) break; /* not 100.. */ - /* here if have the 1000... case */ - sup=up; /* save msu pointer */ - *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */ - /* others all to all-nines, too */ - for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; - dn->exponent--; /* and bump exponent */ - - /* iff the number was at the subnormal boundary (exponent=etiny) */ - /* then the exponent is now out of range, so it will in fact get */ - /* clamped to etiny and the final 9 dropped. */ - /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */ - /* dn->exponent, set->digits); */ - if (dn->exponent+1==set->emin-set->digits+1) { - if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */ - else { - *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */ - dn->digits--; - } - dn->exponent++; - *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; - } - return; /* done */ - } - - /* a full unit to check, with more to come */ - if (*up!=0) break; /* not still 0s */ - count-=DECDPUN; - } /* up */ - - } /* bump<0 */ - - /* Actual bump needed. Do it. */ - decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); - } /* decApplyRound */ - -#if DECSUBSET -/* ------------------------------------------------------------------ */ -/* decFinish -- finish processing a number */ -/* */ -/* dn is the number */ -/* set is the context */ -/* residue is the rounding accumulator (as in decApplyRound) */ -/* status is the accumulator */ -/* */ -/* This finishes off the current number by: */ -/* 1. If not extended: */ -/* a. Converting a zero result to clean '0' */ -/* b. Reducing positive exponents to 0, if would fit in digits */ -/* 2. Checking for overflow and subnormals (always) */ -/* Note this is just Finalize when no subset arithmetic. */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decFinish(decNumber *dn, decContext *set, Int *residue, - uInt *status) { - if (!set->extended) { - if ISZERO(dn) { /* value is zero */ - dn->exponent=0; /* clean exponent .. */ - dn->bits=0; /* .. and sign */ - return; /* no error possible */ - } - if (dn->exponent>=0) { /* non-negative exponent */ - /* >0; reduce to integer if possible */ - if (set->digits >= (dn->exponent+dn->digits)) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); - dn->exponent=0; - } - } - } /* !extended */ - - decFinalize(dn, set, residue, status); - } /* decFinish */ -#endif - -/* ------------------------------------------------------------------ */ -/* decFinalize -- final check, clamp, and round of a number */ -/* */ -/* dn is the number */ -/* set is the context */ -/* residue is the rounding accumulator (as in decApplyRound) */ -/* status is the status accumulator */ -/* */ -/* This finishes off the current number by checking for subnormal */ -/* results, applying any pending rounding, checking for overflow, */ -/* and applying any clamping. */ -/* Underflow and overflow conditions are raised as appropriate. */ -/* All fields are updated as required. */ -/* ------------------------------------------------------------------ */ -static void decFinalize(decNumber *dn, decContext *set, Int *residue, - uInt *status) { - Int shift; /* shift needed if clamping */ - Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */ - - /* Must be careful, here, when checking the exponent as the */ - /* adjusted exponent could overflow 31 bits [because it may already */ - /* be up to twice the expected]. */ - - /* First test for subnormal. This must be done before any final */ - /* round as the result could be rounded to Nmin or 0. */ - if (dn->exponent<=tinyexp) { /* prefilter */ - Int comp; - decNumber nmin; - /* A very nasty case here is dn == Nmin and residue<0 */ - if (dn->exponentemin; - comp=decCompare(dn, &nmin, 1); /* (signless compare) */ - if (comp==BADINT) { /* oops */ - *status|=DEC_Insufficient_storage; /* abandon... */ - return; - } - if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */ - decApplyRound(dn, set, *residue, status); /* might force down */ - decSetSubnormal(dn, set, residue, status); - return; - } - } - - /* now apply any pending round (this could raise overflow). */ - if (*residue!=0) decApplyRound(dn, set, *residue, status); - - /* Check for overflow [redundant in the 'rare' case] or clamp */ - if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */ - - - /* here when might have an overflow or clamp to do */ - if (dn->exponent>set->emax-dn->digits+1) { /* too big */ - decSetOverflow(dn, set, status); - return; - } - /* here when the result is normal but in clamp range */ - if (!set->clamp) return; - - /* here when need to apply the IEEE exponent clamp (fold-down) */ - shift=dn->exponent-(set->emax-set->digits+1); - - /* shift coefficient (if non-zero) */ - if (!ISZERO(dn)) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); - } - dn->exponent-=shift; /* adjust the exponent to match */ - *status|=DEC_Clamped; /* and record the dirty deed */ - return; - } /* decFinalize */ - -/* ------------------------------------------------------------------ */ -/* decSetOverflow -- set number to proper overflow value */ -/* */ -/* dn is the number (used for sign [only] and result) */ -/* set is the context [used for the rounding mode, etc.] */ -/* status contains the current status to be updated */ -/* */ -/* This sets the sign of a number and sets its value to either */ -/* Infinity or the maximum finite value, depending on the sign of */ -/* dn and the rounding mode, following IEEE 854 rules. */ -/* ------------------------------------------------------------------ */ -static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { - Flag needmax=0; /* result is maximum finite value */ - uByte sign=dn->bits&DECNEG; /* clean and save sign bit */ - - if (ISZERO(dn)) { /* zero does not overflow magnitude */ - Int emax=set->emax; /* limit value */ - if (set->clamp) emax-=set->digits-1; /* lower if clamping */ - if (dn->exponent>emax) { /* clamp required */ - dn->exponent=emax; - *status|=DEC_Clamped; - } - return; - } - - decNumberZero(dn); - switch (set->round) { - case DEC_ROUND_DOWN: { - needmax=1; /* never Infinity */ - break;} /* r-d */ - case DEC_ROUND_05UP: { - needmax=1; /* never Infinity */ - break;} /* r-05 */ - case DEC_ROUND_CEILING: { - if (sign) needmax=1; /* Infinity if non-negative */ - break;} /* r-c */ - case DEC_ROUND_FLOOR: { - if (!sign) needmax=1; /* Infinity if negative */ - break;} /* r-f */ - default: break; /* Infinity in all other cases */ - } - if (needmax) { - decSetMaxValue(dn, set); - dn->bits=sign; /* set sign */ - } - else dn->bits=sign|DECINF; /* Value is +/-Infinity */ - *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; - } /* decSetOverflow */ - -/* ------------------------------------------------------------------ */ -/* decSetMaxValue -- set number to +Nmax (maximum normal value) */ -/* */ -/* dn is the number to set */ -/* set is the context [used for digits and emax] */ -/* */ -/* This sets the number to the maximum positive value. */ -/* ------------------------------------------------------------------ */ -static void decSetMaxValue(decNumber *dn, decContext *set) { - Unit *up; /* work */ - Int count=set->digits; /* nines to add */ - dn->digits=count; - /* fill in all nines to set maximum value */ - for (up=dn->lsu; ; up++) { - if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */ - else { /* this is the msu */ - *up=(Unit)(powers[count]-1); - break; - } - count-=DECDPUN; /* filled those digits */ - } /* up */ - dn->bits=0; /* + sign */ - dn->exponent=set->emax-set->digits+1; - } /* decSetMaxValue */ - -/* ------------------------------------------------------------------ */ -/* decSetSubnormal -- process value whose exponent is extended) { - decNumberZero(dn); - /* always full overflow */ - *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; - return; - } - #endif - - /* Full arithmetic -- allow subnormals, rounded to minimum exponent */ - /* (Etiny) if needed */ - etiny=set->emin-(set->digits-1); /* smallest allowed exponent */ - - if ISZERO(dn) { /* value is zero */ - /* residue can never be non-zero here */ - #if DECCHECK - if (*residue!=0) { - printf("++ Subnormal 0 residue %ld\n", (LI)*residue); - *status|=DEC_Invalid_operation; - } - #endif - if (dn->exponentexponent=etiny; - *status|=DEC_Clamped; - } - return; - } - - *status|=DEC_Subnormal; /* have a non-zero subnormal */ - adjust=etiny-dn->exponent; /* calculate digits to remove */ - if (adjust<=0) { /* not out of range; unrounded */ - /* residue can never be non-zero here, except in the Nmin-residue */ - /* case (which is a subnormal result), so can take fast-path here */ - /* it may already be inexact (from setting the coefficient) */ - if (*status&DEC_Inexact) *status|=DEC_Underflow; - return; - } - - /* adjust>0, so need to rescale the result so exponent becomes Etiny */ - /* [this code is similar to that in rescale] */ - workset=*set; /* clone rounding, etc. */ - workset.digits=dn->digits-adjust; /* set requested length */ - workset.emin-=adjust; /* and adjust emin to match */ - /* [note that the latter can be <1, here, similar to Rescale case] */ - decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); - decApplyRound(dn, &workset, *residue, status); - - /* Use 754R/854 default rule: Underflow is set iff Inexact */ - /* [independent of whether trapped] */ - if (*status&DEC_Inexact) *status|=DEC_Underflow; - - /* if rounded up a 999s case, exponent will be off by one; adjust */ - /* back if so [it will fit, because it was shortened earlier] */ - if (dn->exponent>etiny) { - dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); - dn->exponent--; /* (re)adjust the exponent. */ - } - - /* if rounded to zero, it is by definition clamped... */ - if (ISZERO(dn)) *status|=DEC_Clamped; - } /* decSetSubnormal */ - -/* ------------------------------------------------------------------ */ -/* decCheckMath - check entry conditions for a math function */ -/* */ -/* This checks the context and the operand */ -/* */ -/* rhs is the operand to check */ -/* set is the context to check */ -/* status is unchanged if both are good */ -/* */ -/* returns non-zero if status is changed, 0 otherwise */ -/* */ -/* Restrictions enforced: */ -/* */ -/* digits, emax, and -emin in the context must be less than */ -/* DEC_MAX_MATH (999999), and A must be within these bounds if */ -/* non-zero. Invalid_operation is set in the status if a */ -/* restriction is violated. */ -/* ------------------------------------------------------------------ */ -static uInt decCheckMath(const decNumber *rhs, decContext *set, - uInt *status) { - uInt save=*status; /* record */ - if (set->digits>DEC_MAX_MATH - || set->emax>DEC_MAX_MATH - || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; - else if ((rhs->digits>DEC_MAX_MATH - || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 - || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) - && !ISZERO(rhs)) *status|=DEC_Invalid_operation; - return (*status!=save); - } /* decCheckMath */ - -/* ------------------------------------------------------------------ */ -/* decGetInt -- get integer from a number */ -/* */ -/* dn is the number [which will not be altered] */ -/* */ -/* returns one of: */ -/* BADINT if there is a non-zero fraction */ -/* the converted integer */ -/* BIGEVEN if the integer is even and magnitude > 2*10**9 */ -/* BIGODD if the integer is odd and magnitude > 2*10**9 */ -/* */ -/* This checks and gets a whole number from the input decNumber. */ -/* The sign can be determined from dn by the caller when BIGEVEN or */ -/* BIGODD is returned. */ -/* ------------------------------------------------------------------ */ -static Int decGetInt(const decNumber *dn) { - Int theInt; /* result accumulator */ - const Unit *up; /* work */ - Int got; /* digits (real or not) processed */ - Int ilength=dn->digits+dn->exponent; /* integral length */ - Flag neg=decNumberIsNegative(dn); /* 1 if -ve */ - - /* The number must be an integer that fits in 10 digits */ - /* Assert, here, that 10 is enough for any rescale Etiny */ - #if DEC_MAX_EMAX > 999999999 - #error GetInt may need updating [for Emax] - #endif - #if DEC_MIN_EMIN < -999999999 - #error GetInt may need updating [for Emin] - #endif - if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */ - - up=dn->lsu; /* ready for lsu */ - theInt=0; /* ready to accumulate */ - if (dn->exponent>=0) { /* relatively easy */ - /* no fractional part [usual]; allow for positive exponent */ - got=dn->exponent; - } - else { /* -ve exponent; some fractional part to check and discard */ - Int count=-dn->exponent; /* digits to discard */ - /* spin up whole units until reach the Unit with the unit digit */ - for (; count>=DECDPUN; up++) { - if (*up!=0) return BADINT; /* non-zero Unit to discard */ - count-=DECDPUN; - } - if (count==0) got=0; /* [a multiple of DECDPUN] */ - else { /* [not multiple of DECDPUN] */ - Int rem; /* work */ - /* slice off fraction digits and check for non-zero */ - #if DECDPUN<=4 - theInt=QUOT10(*up, count); - rem=*up-theInt*powers[count]; - #else - rem=*up%powers[count]; /* slice off discards */ - theInt=*up/powers[count]; - #endif - if (rem!=0) return BADINT; /* non-zero fraction */ - /* it looks good */ - got=DECDPUN-count; /* number of digits so far */ - up++; /* ready for next */ - } - } - /* now it's known there's no fractional part */ - - /* tricky code now, to accumulate up to 9.3 digits */ - if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */ - - if (ilength<11) { - Int save=theInt; - /* collect any remaining unit(s) */ - for (; got1999999997) ilength=11; - else if (!neg && theInt>999999999) ilength=11; - if (ilength==11) theInt=save; /* restore correct low bit */ - } - } - - if (ilength>10) { /* too big */ - if (theInt&1) return BIGODD; /* bottom bit 1 */ - return BIGEVEN; /* bottom bit 0 */ - } - - if (neg) theInt=-theInt; /* apply sign */ - return theInt; - } /* decGetInt */ - -/* ------------------------------------------------------------------ */ -/* decDecap -- decapitate the coefficient of a number */ -/* */ -/* dn is the number to be decapitated */ -/* drop is the number of digits to be removed from the left of dn; */ -/* this must be <= dn->digits (if equal, the coefficient is */ -/* set to 0) */ -/* */ -/* Returns dn; dn->digits will be <= the initial digits less drop */ -/* (after removing drop digits there may be leading zero digits */ -/* which will also be removed). Only dn->lsu and dn->digits change. */ -/* ------------------------------------------------------------------ */ -static decNumber *decDecap(decNumber *dn, Int drop) { - Unit *msu; /* -> target cut point */ - Int cut; /* work */ - if (drop>=dn->digits) { /* losing the whole thing */ - #if DECCHECK - if (drop>dn->digits) - printf("decDecap called with drop>digits [%ld>%ld]\n", - (LI)drop, (LI)dn->digits); - #endif - dn->lsu[0]=0; - dn->digits=1; - return dn; - } - msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */ - cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */ - if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */ - /* that may have left leading zero digits, so do a proper count... */ - dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); - return dn; - } /* decDecap */ - -/* ------------------------------------------------------------------ */ -/* decBiStr -- compare string with pairwise options */ -/* */ -/* targ is the string to compare */ -/* str1 is one of the strings to compare against (length may be 0) */ -/* str2 is the other; it must be the same length as str1 */ -/* */ -/* returns 1 if strings compare equal, (that is, it is the same */ -/* length as str1 and str2, and each character of targ is in either */ -/* str1 or str2 in the corresponding position), or 0 otherwise */ -/* */ -/* This is used for generic caseless compare, including the awkward */ -/* case of the Turkish dotted and dotless Is. Use as (for example): */ -/* if (decBiStr(test, "mike", "MIKE")) ... */ -/* ------------------------------------------------------------------ */ -static Flag decBiStr(const char *targ, const char *str1, const char *str2) { - for (;;targ++, str1++, str2++) { - if (*targ!=*str1 && *targ!=*str2) return 0; - /* *targ has a match in one (or both, if terminator) */ - if (*targ=='\0') break; - } /* forever */ - return 1; - } /* decBiStr */ - -/* ------------------------------------------------------------------ */ -/* decNaNs -- handle NaN operand or operands */ -/* */ -/* res is the result number */ -/* lhs is the first operand */ -/* rhs is the second operand, or NULL if none */ -/* context is used to limit payload length */ -/* status contains the current status */ -/* returns res in case convenient */ -/* */ -/* Called when one or both operands is a NaN, and propagates the */ -/* appropriate result to res. When an sNaN is found, it is changed */ -/* to a qNaN and Invalid operation is set. */ -/* ------------------------------------------------------------------ */ -static decNumber * decNaNs(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set, - uInt *status) { - /* This decision tree ends up with LHS being the source pointer, */ - /* and status updated if need be */ - if (lhs->bits & DECSNAN) - *status|=DEC_Invalid_operation | DEC_sNaN; - else if (rhs==NULL); - else if (rhs->bits & DECSNAN) { - lhs=rhs; - *status|=DEC_Invalid_operation | DEC_sNaN; - } - else if (lhs->bits & DECNAN); - else lhs=rhs; - - /* propagate the payload */ - if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */ - else { /* too long */ - const Unit *ul; - Unit *ur, *uresp1; - /* copy safe number of units, then decapitate */ - res->bits=lhs->bits; /* need sign etc. */ - uresp1=res->lsu+D2U(set->digits); - for (ur=res->lsu, ul=lhs->lsu; urdigits=D2U(set->digits)*DECDPUN; - /* maybe still too long */ - if (res->digits>set->digits) decDecap(res, res->digits-set->digits); - } - - res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */ - res->bits|=DECNAN; /* .. preserving sign */ - res->exponent=0; /* clean exponent */ - /* [coefficient was copied/decapitated] */ - return res; - } /* decNaNs */ - -/* ------------------------------------------------------------------ */ -/* decStatus -- apply non-zero status */ -/* */ -/* dn is the number to set if error */ -/* status contains the current status (not yet in context) */ -/* set is the context */ -/* */ -/* If the status is an error status, the number is set to a NaN, */ -/* unless the error was an overflow, divide-by-zero, or underflow, */ -/* in which case the number will have already been set. */ -/* */ -/* The context status is then updated with the new status. Note that */ -/* this may raise a signal, so control may never return from this */ -/* routine (hence resources must be recovered before it is called). */ -/* ------------------------------------------------------------------ */ -static void decStatus(decNumber *dn, uInt status, decContext *set) { - if (status & DEC_NaNs) { /* error status -> NaN */ - /* if cause was an sNaN, clear and propagate [NaN is already set up] */ - if (status & DEC_sNaN) status&=~DEC_sNaN; - else { - decNumberZero(dn); /* other error: clean throughout */ - dn->bits=DECNAN; /* and make a quiet NaN */ - } - } - decContextSetStatus(set, status); /* [may not return] */ - return; - } /* decStatus */ - -/* ------------------------------------------------------------------ */ -/* decGetDigits -- count digits in a Units array */ -/* */ -/* uar is the Unit array holding the number (this is often an */ -/* accumulator of some sort) */ -/* len is the length of the array in units [>=1] */ -/* */ -/* returns the number of (significant) digits in the array */ -/* */ -/* All leading zeros are excluded, except the last if the array has */ -/* only zero Units. */ -/* ------------------------------------------------------------------ */ -/* This may be called twice during some operations. */ -static Int decGetDigits(Unit *uar, Int len) { - Unit *up=uar+(len-1); /* -> msu */ - Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */ - #if DECDPUN>4 - uInt const *pow; /* work */ - #endif - /* (at least 1 in final msu) */ - #if DECCHECK - if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); - #endif - - for (; up>=uar; up--) { - if (*up==0) { /* unit is all 0s */ - if (digits==1) break; /* a zero has one digit */ - digits-=DECDPUN; /* adjust for 0 unit */ - continue;} - /* found the first (most significant) non-zero Unit */ - #if DECDPUN>1 /* not done yet */ - if (*up<10) break; /* is 1-9 */ - digits++; - #if DECDPUN>2 /* not done yet */ - if (*up<100) break; /* is 10-99 */ - digits++; - #if DECDPUN>3 /* not done yet */ - if (*up<1000) break; /* is 100-999 */ - digits++; - #if DECDPUN>4 /* count the rest ... */ - for (pow=&powers[4]; *up>=*pow; pow++) digits++; - #endif - #endif - #endif - #endif - break; - } /* up */ - return digits; - } /* decGetDigits */ - -#if DECTRACE | DECCHECK -/* ------------------------------------------------------------------ */ -/* decNumberShow -- display a number [debug aid] */ -/* dn is the number to show */ -/* */ -/* Shows: sign, exponent, coefficient (msu first), digits */ -/* or: sign, special-value */ -/* ------------------------------------------------------------------ */ -/* this is public so other modules can use it */ -void decNumberShow(const decNumber *dn) { - const Unit *up; /* work */ - uInt u, d; /* .. */ - Int cut; /* .. */ - char isign='+'; /* main sign */ - if (dn==NULL) { - printf("NULL\n"); - return;} - if (decNumberIsNegative(dn)) isign='-'; - printf(" >> %c ", isign); - if (dn->bits&DECSPECIAL) { /* Is a special value */ - if (decNumberIsInfinite(dn)) printf("Infinity"); - else { /* a NaN */ - if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */ - else printf("NaN"); - } - /* if coefficient and exponent are 0, no more to do */ - if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { - printf("\n"); - return;} - /* drop through to report other information */ - printf(" "); - } - - /* now carefully display the coefficient */ - up=dn->lsu+D2U(dn->digits)-1; /* msu */ - printf("%ld", (LI)*up); - for (up=up-1; up>=dn->lsu; up--) { - u=*up; - printf(":"); - for (cut=DECDPUN-1; cut>=0; cut--) { - d=u/powers[cut]; - u-=d*powers[cut]; - printf("%ld", (LI)d); - } /* cut */ - } /* up */ - if (dn->exponent!=0) { - char esign='+'; - if (dn->exponent<0) esign='-'; - printf(" E%c%ld", esign, (LI)abs(dn->exponent)); - } - printf(" [%ld]\n", (LI)dn->digits); - } /* decNumberShow */ -#endif - -#if DECTRACE || DECCHECK -/* ------------------------------------------------------------------ */ -/* decDumpAr -- display a unit array [debug/check aid] */ -/* name is a single-character tag name */ -/* ar is the array to display */ -/* len is the length of the array in Units */ -/* ------------------------------------------------------------------ */ -static void decDumpAr(char name, const Unit *ar, Int len) { - Int i; - const char *spec; - #if DECDPUN==9 - spec="%09d "; - #elif DECDPUN==8 - spec="%08d "; - #elif DECDPUN==7 - spec="%07d "; - #elif DECDPUN==6 - spec="%06d "; - #elif DECDPUN==5 - spec="%05d "; - #elif DECDPUN==4 - spec="%04d "; - #elif DECDPUN==3 - spec="%03d "; - #elif DECDPUN==2 - spec="%02d "; - #else - spec="%d "; - #endif - printf(" :%c: ", name); - for (i=len-1; i>=0; i--) { - if (i==len-1) printf("%ld ", (LI)ar[i]); - else printf(spec, ar[i]); - } - printf("\n"); - return;} -#endif - -#if DECCHECK -/* ------------------------------------------------------------------ */ -/* decCheckOperands -- check operand(s) to a routine */ -/* res is the result structure (not checked; it will be set to */ -/* quiet NaN if error found (and it is not NULL)) */ -/* lhs is the first operand (may be DECUNRESU) */ -/* rhs is the second (may be DECUNUSED) */ -/* set is the context (may be DECUNCONT) */ -/* returns 0 if both operands, and the context are clean, or 1 */ -/* otherwise (in which case the context will show an error, */ -/* unless NULL). Note that res is not cleaned; caller should */ -/* handle this so res=NULL case is safe. */ -/* The caller is expected to abandon immediately if 1 is returned. */ -/* ------------------------------------------------------------------ */ -static Flag decCheckOperands(decNumber *res, const decNumber *lhs, - const decNumber *rhs, decContext *set) { - Flag bad=0; - if (set==NULL) { /* oops; hopeless */ - #if DECTRACE || DECVERB - printf("Reference to context is NULL.\n"); - #endif - bad=1; - return 1;} - else if (set!=DECUNCONT - && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { - bad=1; - #if DECTRACE || DECVERB - printf("Bad context [digits=%ld round=%ld].\n", - (LI)set->digits, (LI)set->round); - #endif - } - else { - if (res==NULL) { - bad=1; - #if DECTRACE - /* this one not DECVERB as standard tests include NULL */ - printf("Reference to result is NULL.\n"); - #endif - } - if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); - if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); - } - if (bad) { - if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation); - if (res!=DECUNRESU && res!=NULL) { - decNumberZero(res); - res->bits=DECNAN; /* qNaN */ - } - } - return bad; - } /* decCheckOperands */ - -/* ------------------------------------------------------------------ */ -/* decCheckNumber -- check a number */ -/* dn is the number to check */ -/* returns 0 if the number is clean, or 1 otherwise */ -/* */ -/* The number is considered valid if it could be a result from some */ -/* operation in some valid context. */ -/* ------------------------------------------------------------------ */ -static Flag decCheckNumber(const decNumber *dn) { - const Unit *up; /* work */ - uInt maxuint; /* .. */ - Int ae, d, digits; /* .. */ - Int emin, emax; /* .. */ - - if (dn==NULL) { /* hopeless */ - #if DECTRACE - /* this one not DECVERB as standard tests include NULL */ - printf("Reference to decNumber is NULL.\n"); - #endif - return 1;} - - /* check special values */ - if (dn->bits & DECSPECIAL) { - if (dn->exponent!=0) { - #if DECTRACE || DECVERB - printf("Exponent %ld (not 0) for a special value [%02x].\n", - (LI)dn->exponent, dn->bits); - #endif - return 1;} - - /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */ - if (decNumberIsInfinite(dn)) { - if (dn->digits!=1) { - #if DECTRACE || DECVERB - printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); - #endif - return 1;} - if (*dn->lsu!=0) { - #if DECTRACE || DECVERB - printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); - #endif - decDumpAr('I', dn->lsu, D2U(dn->digits)); - return 1;} - } /* Inf */ - /* 2002.12.26: negative NaNs can now appear through proposed IEEE */ - /* concrete formats (decimal64, etc.). */ - return 0; - } - - /* check the coefficient */ - if (dn->digits<1 || dn->digits>DECNUMMAXP) { - #if DECTRACE || DECVERB - printf("Digits %ld in number.\n", (LI)dn->digits); - #endif - return 1;} - - d=dn->digits; - - for (up=dn->lsu; d>0; up++) { - if (d>DECDPUN) maxuint=DECDPUNMAX; - else { /* reached the msu */ - maxuint=powers[d]-1; - if (dn->digits>1 && *upmaxuint) { - #if DECTRACE || DECVERB - printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", - (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); - #endif - return 1;} - d-=DECDPUN; - } - - /* check the exponent. Note that input operands can have exponents */ - /* which are out of the set->emin/set->emax and set->digits range */ - /* (just as they can have more digits than set->digits). */ - ae=dn->exponent+dn->digits-1; /* adjusted exponent */ - emax=DECNUMMAXE; - emin=DECNUMMINE; - digits=DECNUMMAXP; - if (ae+emax) { - #if DECTRACE || DECVERB - printf("Adjusted exponent overflow [%ld].\n", (LI)ae); - decNumberShow(dn); - #endif - return 1;} - - return 0; /* it's OK */ - } /* decCheckNumber */ - -/* ------------------------------------------------------------------ */ -/* decCheckInexact -- check a normal finite inexact result has digits */ -/* dn is the number to check */ -/* set is the context (for status and precision) */ -/* sets Invalid operation, etc., if some digits are missing */ -/* [this check is not made for DECSUBSET compilation or when */ -/* subnormal is not set] */ -/* ------------------------------------------------------------------ */ -static void decCheckInexact(const decNumber *dn, decContext *set) { - #if !DECSUBSET && DECEXTFLAG - if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact - && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { - #if DECTRACE || DECVERB - printf("Insufficient digits [%ld] on normal Inexact result.\n", - (LI)dn->digits); - decNumberShow(dn); - #endif - decContextSetStatus(set, DEC_Invalid_operation); - } - #else - /* next is a noop for quiet compiler */ - if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; - #endif - return; - } /* decCheckInexact */ -#endif - -#if DECALLOC -#undef malloc -#undef free -/* ------------------------------------------------------------------ */ -/* decMalloc -- accountable allocation routine */ -/* n is the number of bytes to allocate */ -/* */ -/* Semantics is the same as the stdlib malloc routine, but bytes */ -/* allocated are accounted for globally, and corruption fences are */ -/* added before and after the 'actual' storage. */ -/* ------------------------------------------------------------------ */ -/* This routine allocates storage with an extra twelve bytes; 8 are */ -/* at the start and hold: */ -/* 0-3 the original length requested */ -/* 4-7 buffer corruption detection fence (DECFENCE, x4) */ -/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ -/* ------------------------------------------------------------------ */ -static void *decMalloc(size_t n) { - uInt size=n+12; /* true size */ - void *alloc; /* -> allocated storage */ - uInt *j; /* work */ - uByte *b, *b0; /* .. */ - - alloc=malloc(size); /* -> allocated storage */ - if (alloc==NULL) return NULL; /* out of strorage */ - b0=(uByte *)alloc; /* as bytes */ - decAllocBytes+=n; /* account for storage */ - j=(uInt *)alloc; /* -> first four bytes */ - *j=n; /* save n */ - /* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */ - for (b=b0+4; b play area */ - } /* decMalloc */ - -/* ------------------------------------------------------------------ */ -/* decFree -- accountable free routine */ -/* alloc is the storage to free */ -/* */ -/* Semantics is the same as the stdlib malloc routine, except that */ -/* the global storage accounting is updated and the fences are */ -/* checked to ensure that no routine has written 'out of bounds'. */ -/* ------------------------------------------------------------------ */ -/* This routine first checks that the fences have not been corrupted. */ -/* It then frees the storage using the 'truw' storage address (that */ -/* is, offset by 8). */ -/* ------------------------------------------------------------------ */ -static void decFree(void *alloc) { - uInt *j, n; /* pointer, original length */ - uByte *b, *b0; /* work */ - - if (alloc==NULL) return; /* allowed; it's a nop */ - b0=(uByte *)alloc; /* as bytes */ - b0-=8; /* -> true start of storage */ - j=(uInt *)b0; /* -> first four bytes */ - n=*j; /* lift */ - for (b=b0+4; b