From 437fd90c0250dee670290f9b714253671a990160 Mon Sep 17 00:00:00 2001 From: José Pekkarinen Date: Wed, 18 May 2016 13:18:31 +0300 Subject: These changes are the raw update to qemu-2.6. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Collission happened in the following patches: migration: do cleanup operation after completion(738df5b9) Bug fix.(1750c932f86) kvmclock: add a new function to update env->tsc.(b52baab2) The code provided by the patches was already in the upstreamed version. Change-Id: I3cc11841a6a76ae20887b2e245710199e1ea7f9a Signed-off-by: José Pekkarinen --- qemu/include/exec/ram_addr.h | 276 +++++++++++++++++++++++++++++++++++++------ 1 file changed, 240 insertions(+), 36 deletions(-) (limited to 'qemu/include/exec/ram_addr.h') diff --git a/qemu/include/exec/ram_addr.h b/qemu/include/exec/ram_addr.h index c113f2114..5adf7a4fc 100644 --- a/qemu/include/exec/ram_addr.h +++ b/qemu/include/exec/ram_addr.h @@ -22,22 +22,93 @@ #ifndef CONFIG_USER_ONLY #include "hw/xen/xen.h" -ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, - bool share, const char *mem_path, - Error **errp); -ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, - MemoryRegion *mr, Error **errp); -ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); -ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, - void (*resized)(const char*, - uint64_t length, - void *host), - MemoryRegion *mr, Error **errp); +struct RAMBlock { + struct rcu_head rcu; + struct MemoryRegion *mr; + uint8_t *host; + ram_addr_t offset; + ram_addr_t used_length; + ram_addr_t max_length; + void (*resized)(const char*, uint64_t length, void *host); + uint32_t flags; + /* Protected by iothread lock. */ + char idstr[256]; + /* RCU-enabled, writes protected by the ramlist lock */ + QLIST_ENTRY(RAMBlock) next; + int fd; +}; + +static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset) +{ + return (b && b->host && offset < b->used_length) ? true : false; +} + +static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) +{ + assert(offset_in_ramblock(block, offset)); + return (char *)block->host + offset; +} + +/* The dirty memory bitmap is split into fixed-size blocks to allow growth + * under RCU. The bitmap for a block can be accessed as follows: + * + * rcu_read_lock(); + * + * DirtyMemoryBlocks *blocks = + * atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]); + * + * ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; + * unsigned long *block = blocks.blocks[idx]; + * ...access block bitmap... + * + * rcu_read_unlock(); + * + * Remember to check for the end of the block when accessing a range of + * addresses. Move on to the next block if you reach the end. + * + * Organization into blocks allows dirty memory to grow (but not shrink) under + * RCU. When adding new RAMBlocks requires the dirty memory to grow, a new + * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept + * the same. Other threads can safely access existing blocks while dirty + * memory is being grown. When no threads are using the old DirtyMemoryBlocks + * anymore it is freed by RCU (but the underlying blocks stay because they are + * pointed to from the new DirtyMemoryBlocks). + */ +#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8) +typedef struct { + struct rcu_head rcu; + unsigned long *blocks[]; +} DirtyMemoryBlocks; + +typedef struct RAMList { + QemuMutex mutex; + RAMBlock *mru_block; + /* RCU-enabled, writes protected by the ramlist lock. */ + QLIST_HEAD(, RAMBlock) blocks; + DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM]; + uint32_t version; +} RAMList; +extern RAMList ram_list; + +ram_addr_t last_ram_offset(void); +void qemu_mutex_lock_ramlist(void); +void qemu_mutex_unlock_ramlist(void); + +RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, + bool share, const char *mem_path, + Error **errp); +RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, + MemoryRegion *mr, Error **errp); +RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); +RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, + void (*resized)(const char*, + uint64_t length, + void *host), + MemoryRegion *mr, Error **errp); int qemu_get_ram_fd(ram_addr_t addr); +void qemu_set_ram_fd(ram_addr_t addr, int fd); void *qemu_get_ram_block_host_ptr(ram_addr_t addr); -void *qemu_get_ram_ptr(ram_addr_t addr); -void qemu_ram_free(ram_addr_t addr); -void qemu_ram_free_from_ptr(ram_addr_t addr); +void qemu_ram_free(RAMBlock *block); int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp); @@ -48,30 +119,82 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { - unsigned long end, page, next; + DirtyMemoryBlocks *blocks; + unsigned long end, page; + unsigned long idx, offset, base; + bool dirty = false; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; - next = find_next_bit(ram_list.dirty_memory[client], end, page); - return next < end; + rcu_read_lock(); + + blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + unsigned long num = next - base; + unsigned long found = find_next_bit(blocks->blocks[idx], num, offset); + if (found < num) { + dirty = true; + break; + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; + } + + rcu_read_unlock(); + + return dirty; } static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { - unsigned long end, page, next; + DirtyMemoryBlocks *blocks; + unsigned long end, page; + unsigned long idx, offset, base; + bool dirty = true; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; - next = find_next_zero_bit(ram_list.dirty_memory[client], end, page); - return next >= end; + rcu_read_lock(); + + blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + unsigned long num = next - base; + unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset); + if (found < num) { + dirty = false; + break; + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; + } + + rcu_read_unlock(); + + return dirty; } static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, @@ -113,28 +236,73 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, unsigned client) { + unsigned long page, idx, offset; + DirtyMemoryBlocks *blocks; + assert(client < DIRTY_MEMORY_NUM); - set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]); + + page = addr >> TARGET_PAGE_BITS; + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + + rcu_read_lock(); + + blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); + + set_bit_atomic(offset, blocks->blocks[idx]); + + rcu_read_unlock(); } static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, ram_addr_t length, uint8_t mask) { + DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM]; unsigned long end, page; - unsigned long **d = ram_list.dirty_memory; + unsigned long idx, offset, base; + int i; + + if (!mask && !xen_enabled()) { + return; + } end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; - if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { - bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page); - } - if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { - bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page); + + rcu_read_lock(); + + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]); } - if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { - bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page); + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + + if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx], + offset, next - page); + } + if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx], + offset, next - page); + } + if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx], + offset, next - page); + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; } + + rcu_read_unlock(); + xen_modified_memory(start, length); } @@ -154,21 +322,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, /* start address is aligned at the start of a word? */ if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && (hpratio == 1)) { + unsigned long **blocks[DIRTY_MEMORY_NUM]; + unsigned long idx; + unsigned long offset; long k; long nr = BITS_TO_LONGS(pages); + idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; + offset = BIT_WORD((start >> TARGET_PAGE_BITS) % + DIRTY_MEMORY_BLOCK_SIZE); + + rcu_read_lock(); + + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks; + } + for (k = 0; k < nr; k++) { if (bitmap[k]) { unsigned long temp = leul_to_cpu(bitmap[k]); - unsigned long **d = ram_list.dirty_memory; - atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp); - atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp); + atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp); + atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp); if (tcg_enabled()) { - atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp); + atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp); } } + + if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { + offset = 0; + idx++; + } } + + rcu_read_unlock(); + xen_modified_memory(start, pages << TARGET_PAGE_BITS); } else { uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; @@ -220,18 +408,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest, if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { int k; int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); - unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]; + unsigned long * const *src; + unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = BIT_WORD((page * BITS_PER_LONG) % + DIRTY_MEMORY_BLOCK_SIZE); + + rcu_read_lock(); + + src = atomic_rcu_read( + &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks; for (k = page; k < page + nr; k++) { - if (src[k]) { - unsigned long bits = atomic_xchg(&src[k], 0); + if (src[idx][offset]) { + unsigned long bits = atomic_xchg(&src[idx][offset], 0); unsigned long new_dirty; new_dirty = ~dest[k]; dest[k] |= bits; new_dirty &= bits; num_dirty += ctpopl(new_dirty); } + + if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { + offset = 0; + idx++; + } } + + rcu_read_unlock(); } else { for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_test_and_clear_dirty( @@ -249,5 +452,6 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest, return num_dirty; } +void migration_bitmap_extend(ram_addr_t old, ram_addr_t new); #endif #endif -- cgit 1.2.3-korg