From 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 Mon Sep 17 00:00:00 2001 From: Yunhong Jiang Date: Tue, 4 Aug 2015 12:17:53 -0700 Subject: Add the rt linux 4.1.3-rt3 as base Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang --- kernel/fs/xfs/xfs_buf.c | 1901 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1901 insertions(+) create mode 100644 kernel/fs/xfs/xfs_buf.c (limited to 'kernel/fs/xfs/xfs_buf.c') diff --git a/kernel/fs/xfs/xfs_buf.c b/kernel/fs/xfs/xfs_buf.c new file mode 100644 index 000000000..1790b00be --- /dev/null +++ b/kernel/fs/xfs/xfs_buf.c @@ -0,0 +1,1901 @@ +/* + * Copyright (c) 2000-2006 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_sb.h" +#include "xfs_mount.h" +#include "xfs_trace.h" +#include "xfs_log.h" + +static kmem_zone_t *xfs_buf_zone; + +#ifdef XFS_BUF_LOCK_TRACKING +# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) +# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) +# define XB_GET_OWNER(bp) ((bp)->b_last_holder) +#else +# define XB_SET_OWNER(bp) do { } while (0) +# define XB_CLEAR_OWNER(bp) do { } while (0) +# define XB_GET_OWNER(bp) do { } while (0) +#endif + +#define xb_to_gfp(flags) \ + ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) + + +static inline int +xfs_buf_is_vmapped( + struct xfs_buf *bp) +{ + /* + * Return true if the buffer is vmapped. + * + * b_addr is null if the buffer is not mapped, but the code is clever + * enough to know it doesn't have to map a single page, so the check has + * to be both for b_addr and bp->b_page_count > 1. + */ + return bp->b_addr && bp->b_page_count > 1; +} + +static inline int +xfs_buf_vmap_len( + struct xfs_buf *bp) +{ + return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; +} + +/* + * When we mark a buffer stale, we remove the buffer from the LRU and clear the + * b_lru_ref count so that the buffer is freed immediately when the buffer + * reference count falls to zero. If the buffer is already on the LRU, we need + * to remove the reference that LRU holds on the buffer. + * + * This prevents build-up of stale buffers on the LRU. + */ +void +xfs_buf_stale( + struct xfs_buf *bp) +{ + ASSERT(xfs_buf_islocked(bp)); + + bp->b_flags |= XBF_STALE; + + /* + * Clear the delwri status so that a delwri queue walker will not + * flush this buffer to disk now that it is stale. The delwri queue has + * a reference to the buffer, so this is safe to do. + */ + bp->b_flags &= ~_XBF_DELWRI_Q; + + spin_lock(&bp->b_lock); + atomic_set(&bp->b_lru_ref, 0); + if (!(bp->b_state & XFS_BSTATE_DISPOSE) && + (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) + atomic_dec(&bp->b_hold); + + ASSERT(atomic_read(&bp->b_hold) >= 1); + spin_unlock(&bp->b_lock); +} + +static int +xfs_buf_get_maps( + struct xfs_buf *bp, + int map_count) +{ + ASSERT(bp->b_maps == NULL); + bp->b_map_count = map_count; + + if (map_count == 1) { + bp->b_maps = &bp->__b_map; + return 0; + } + + bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), + KM_NOFS); + if (!bp->b_maps) + return -ENOMEM; + return 0; +} + +/* + * Frees b_pages if it was allocated. + */ +static void +xfs_buf_free_maps( + struct xfs_buf *bp) +{ + if (bp->b_maps != &bp->__b_map) { + kmem_free(bp->b_maps); + bp->b_maps = NULL; + } +} + +struct xfs_buf * +_xfs_buf_alloc( + struct xfs_buftarg *target, + struct xfs_buf_map *map, + int nmaps, + xfs_buf_flags_t flags) +{ + struct xfs_buf *bp; + int error; + int i; + + bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); + if (unlikely(!bp)) + return NULL; + + /* + * We don't want certain flags to appear in b_flags unless they are + * specifically set by later operations on the buffer. + */ + flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); + + atomic_set(&bp->b_hold, 1); + atomic_set(&bp->b_lru_ref, 1); + init_completion(&bp->b_iowait); + INIT_LIST_HEAD(&bp->b_lru); + INIT_LIST_HEAD(&bp->b_list); + RB_CLEAR_NODE(&bp->b_rbnode); + sema_init(&bp->b_sema, 0); /* held, no waiters */ + spin_lock_init(&bp->b_lock); + XB_SET_OWNER(bp); + bp->b_target = target; + bp->b_flags = flags; + + /* + * Set length and io_length to the same value initially. + * I/O routines should use io_length, which will be the same in + * most cases but may be reset (e.g. XFS recovery). + */ + error = xfs_buf_get_maps(bp, nmaps); + if (error) { + kmem_zone_free(xfs_buf_zone, bp); + return NULL; + } + + bp->b_bn = map[0].bm_bn; + bp->b_length = 0; + for (i = 0; i < nmaps; i++) { + bp->b_maps[i].bm_bn = map[i].bm_bn; + bp->b_maps[i].bm_len = map[i].bm_len; + bp->b_length += map[i].bm_len; + } + bp->b_io_length = bp->b_length; + + atomic_set(&bp->b_pin_count, 0); + init_waitqueue_head(&bp->b_waiters); + + XFS_STATS_INC(xb_create); + trace_xfs_buf_init(bp, _RET_IP_); + + return bp; +} + +/* + * Allocate a page array capable of holding a specified number + * of pages, and point the page buf at it. + */ +STATIC int +_xfs_buf_get_pages( + xfs_buf_t *bp, + int page_count) +{ + /* Make sure that we have a page list */ + if (bp->b_pages == NULL) { + bp->b_page_count = page_count; + if (page_count <= XB_PAGES) { + bp->b_pages = bp->b_page_array; + } else { + bp->b_pages = kmem_alloc(sizeof(struct page *) * + page_count, KM_NOFS); + if (bp->b_pages == NULL) + return -ENOMEM; + } + memset(bp->b_pages, 0, sizeof(struct page *) * page_count); + } + return 0; +} + +/* + * Frees b_pages if it was allocated. + */ +STATIC void +_xfs_buf_free_pages( + xfs_buf_t *bp) +{ + if (bp->b_pages != bp->b_page_array) { + kmem_free(bp->b_pages); + bp->b_pages = NULL; + } +} + +/* + * Releases the specified buffer. + * + * The modification state of any associated pages is left unchanged. + * The buffer must not be on any hash - use xfs_buf_rele instead for + * hashed and refcounted buffers + */ +void +xfs_buf_free( + xfs_buf_t *bp) +{ + trace_xfs_buf_free(bp, _RET_IP_); + + ASSERT(list_empty(&bp->b_lru)); + + if (bp->b_flags & _XBF_PAGES) { + uint i; + + if (xfs_buf_is_vmapped(bp)) + vm_unmap_ram(bp->b_addr - bp->b_offset, + bp->b_page_count); + + for (i = 0; i < bp->b_page_count; i++) { + struct page *page = bp->b_pages[i]; + + __free_page(page); + } + } else if (bp->b_flags & _XBF_KMEM) + kmem_free(bp->b_addr); + _xfs_buf_free_pages(bp); + xfs_buf_free_maps(bp); + kmem_zone_free(xfs_buf_zone, bp); +} + +/* + * Allocates all the pages for buffer in question and builds it's page list. + */ +STATIC int +xfs_buf_allocate_memory( + xfs_buf_t *bp, + uint flags) +{ + size_t size; + size_t nbytes, offset; + gfp_t gfp_mask = xb_to_gfp(flags); + unsigned short page_count, i; + xfs_off_t start, end; + int error; + + /* + * for buffers that are contained within a single page, just allocate + * the memory from the heap - there's no need for the complexity of + * page arrays to keep allocation down to order 0. + */ + size = BBTOB(bp->b_length); + if (size < PAGE_SIZE) { + bp->b_addr = kmem_alloc(size, KM_NOFS); + if (!bp->b_addr) { + /* low memory - use alloc_page loop instead */ + goto use_alloc_page; + } + + if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != + ((unsigned long)bp->b_addr & PAGE_MASK)) { + /* b_addr spans two pages - use alloc_page instead */ + kmem_free(bp->b_addr); + bp->b_addr = NULL; + goto use_alloc_page; + } + bp->b_offset = offset_in_page(bp->b_addr); + bp->b_pages = bp->b_page_array; + bp->b_pages[0] = virt_to_page(bp->b_addr); + bp->b_page_count = 1; + bp->b_flags |= _XBF_KMEM; + return 0; + } + +use_alloc_page: + start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; + end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) + >> PAGE_SHIFT; + page_count = end - start; + error = _xfs_buf_get_pages(bp, page_count); + if (unlikely(error)) + return error; + + offset = bp->b_offset; + bp->b_flags |= _XBF_PAGES; + + for (i = 0; i < bp->b_page_count; i++) { + struct page *page; + uint retries = 0; +retry: + page = alloc_page(gfp_mask); + if (unlikely(page == NULL)) { + if (flags & XBF_READ_AHEAD) { + bp->b_page_count = i; + error = -ENOMEM; + goto out_free_pages; + } + + /* + * This could deadlock. + * + * But until all the XFS lowlevel code is revamped to + * handle buffer allocation failures we can't do much. + */ + if (!(++retries % 100)) + xfs_err(NULL, + "possible memory allocation deadlock in %s (mode:0x%x)", + __func__, gfp_mask); + + XFS_STATS_INC(xb_page_retries); + congestion_wait(BLK_RW_ASYNC, HZ/50); + goto retry; + } + + XFS_STATS_INC(xb_page_found); + + nbytes = min_t(size_t, size, PAGE_SIZE - offset); + size -= nbytes; + bp->b_pages[i] = page; + offset = 0; + } + return 0; + +out_free_pages: + for (i = 0; i < bp->b_page_count; i++) + __free_page(bp->b_pages[i]); + return error; +} + +/* + * Map buffer into kernel address-space if necessary. + */ +STATIC int +_xfs_buf_map_pages( + xfs_buf_t *bp, + uint flags) +{ + ASSERT(bp->b_flags & _XBF_PAGES); + if (bp->b_page_count == 1) { + /* A single page buffer is always mappable */ + bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; + } else if (flags & XBF_UNMAPPED) { + bp->b_addr = NULL; + } else { + int retried = 0; + unsigned noio_flag; + + /* + * vm_map_ram() will allocate auxillary structures (e.g. + * pagetables) with GFP_KERNEL, yet we are likely to be under + * GFP_NOFS context here. Hence we need to tell memory reclaim + * that we are in such a context via PF_MEMALLOC_NOIO to prevent + * memory reclaim re-entering the filesystem here and + * potentially deadlocking. + */ + noio_flag = memalloc_noio_save(); + do { + bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, + -1, PAGE_KERNEL); + if (bp->b_addr) + break; + vm_unmap_aliases(); + } while (retried++ <= 1); + memalloc_noio_restore(noio_flag); + + if (!bp->b_addr) + return -ENOMEM; + bp->b_addr += bp->b_offset; + } + + return 0; +} + +/* + * Finding and Reading Buffers + */ + +/* + * Look up, and creates if absent, a lockable buffer for + * a given range of an inode. The buffer is returned + * locked. No I/O is implied by this call. + */ +xfs_buf_t * +_xfs_buf_find( + struct xfs_buftarg *btp, + struct xfs_buf_map *map, + int nmaps, + xfs_buf_flags_t flags, + xfs_buf_t *new_bp) +{ + size_t numbytes; + struct xfs_perag *pag; + struct rb_node **rbp; + struct rb_node *parent; + xfs_buf_t *bp; + xfs_daddr_t blkno = map[0].bm_bn; + xfs_daddr_t eofs; + int numblks = 0; + int i; + + for (i = 0; i < nmaps; i++) + numblks += map[i].bm_len; + numbytes = BBTOB(numblks); + + /* Check for IOs smaller than the sector size / not sector aligned */ + ASSERT(!(numbytes < btp->bt_meta_sectorsize)); + ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); + + /* + * Corrupted block numbers can get through to here, unfortunately, so we + * have to check that the buffer falls within the filesystem bounds. + */ + eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); + if (blkno < 0 || blkno >= eofs) { + /* + * XXX (dgc): we should really be returning -EFSCORRUPTED here, + * but none of the higher level infrastructure supports + * returning a specific error on buffer lookup failures. + */ + xfs_alert(btp->bt_mount, + "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", + __func__, blkno, eofs); + WARN_ON(1); + return NULL; + } + + /* get tree root */ + pag = xfs_perag_get(btp->bt_mount, + xfs_daddr_to_agno(btp->bt_mount, blkno)); + + /* walk tree */ + spin_lock(&pag->pag_buf_lock); + rbp = &pag->pag_buf_tree.rb_node; + parent = NULL; + bp = NULL; + while (*rbp) { + parent = *rbp; + bp = rb_entry(parent, struct xfs_buf, b_rbnode); + + if (blkno < bp->b_bn) + rbp = &(*rbp)->rb_left; + else if (blkno > bp->b_bn) + rbp = &(*rbp)->rb_right; + else { + /* + * found a block number match. If the range doesn't + * match, the only way this is allowed is if the buffer + * in the cache is stale and the transaction that made + * it stale has not yet committed. i.e. we are + * reallocating a busy extent. Skip this buffer and + * continue searching to the right for an exact match. + */ + if (bp->b_length != numblks) { + ASSERT(bp->b_flags & XBF_STALE); + rbp = &(*rbp)->rb_right; + continue; + } + atomic_inc(&bp->b_hold); + goto found; + } + } + + /* No match found */ + if (new_bp) { + rb_link_node(&new_bp->b_rbnode, parent, rbp); + rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); + /* the buffer keeps the perag reference until it is freed */ + new_bp->b_pag = pag; + spin_unlock(&pag->pag_buf_lock); + } else { + XFS_STATS_INC(xb_miss_locked); + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + } + return new_bp; + +found: + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + + if (!xfs_buf_trylock(bp)) { + if (flags & XBF_TRYLOCK) { + xfs_buf_rele(bp); + XFS_STATS_INC(xb_busy_locked); + return NULL; + } + xfs_buf_lock(bp); + XFS_STATS_INC(xb_get_locked_waited); + } + + /* + * if the buffer is stale, clear all the external state associated with + * it. We need to keep flags such as how we allocated the buffer memory + * intact here. + */ + if (bp->b_flags & XBF_STALE) { + ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); + ASSERT(bp->b_iodone == NULL); + bp->b_flags &= _XBF_KMEM | _XBF_PAGES; + bp->b_ops = NULL; + } + + trace_xfs_buf_find(bp, flags, _RET_IP_); + XFS_STATS_INC(xb_get_locked); + return bp; +} + +/* + * Assembles a buffer covering the specified range. The code is optimised for + * cache hits, as metadata intensive workloads will see 3 orders of magnitude + * more hits than misses. + */ +struct xfs_buf * +xfs_buf_get_map( + struct xfs_buftarg *target, + struct xfs_buf_map *map, + int nmaps, + xfs_buf_flags_t flags) +{ + struct xfs_buf *bp; + struct xfs_buf *new_bp; + int error = 0; + + bp = _xfs_buf_find(target, map, nmaps, flags, NULL); + if (likely(bp)) + goto found; + + new_bp = _xfs_buf_alloc(target, map, nmaps, flags); + if (unlikely(!new_bp)) + return NULL; + + error = xfs_buf_allocate_memory(new_bp, flags); + if (error) { + xfs_buf_free(new_bp); + return NULL; + } + + bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); + if (!bp) { + xfs_buf_free(new_bp); + return NULL; + } + + if (bp != new_bp) + xfs_buf_free(new_bp); + +found: + if (!bp->b_addr) { + error = _xfs_buf_map_pages(bp, flags); + if (unlikely(error)) { + xfs_warn(target->bt_mount, + "%s: failed to map pagesn", __func__); + xfs_buf_relse(bp); + return NULL; + } + } + + XFS_STATS_INC(xb_get); + trace_xfs_buf_get(bp, flags, _RET_IP_); + return bp; +} + +STATIC int +_xfs_buf_read( + xfs_buf_t *bp, + xfs_buf_flags_t flags) +{ + ASSERT(!(flags & XBF_WRITE)); + ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); + + bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); + bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); + + if (flags & XBF_ASYNC) { + xfs_buf_submit(bp); + return 0; + } + return xfs_buf_submit_wait(bp); +} + +xfs_buf_t * +xfs_buf_read_map( + struct xfs_buftarg *target, + struct xfs_buf_map *map, + int nmaps, + xfs_buf_flags_t flags, + const struct xfs_buf_ops *ops) +{ + struct xfs_buf *bp; + + flags |= XBF_READ; + + bp = xfs_buf_get_map(target, map, nmaps, flags); + if (bp) { + trace_xfs_buf_read(bp, flags, _RET_IP_); + + if (!XFS_BUF_ISDONE(bp)) { + XFS_STATS_INC(xb_get_read); + bp->b_ops = ops; + _xfs_buf_read(bp, flags); + } else if (flags & XBF_ASYNC) { + /* + * Read ahead call which is already satisfied, + * drop the buffer + */ + xfs_buf_relse(bp); + return NULL; + } else { + /* We do not want read in the flags */ + bp->b_flags &= ~XBF_READ; + } + } + + return bp; +} + +/* + * If we are not low on memory then do the readahead in a deadlock + * safe manner. + */ +void +xfs_buf_readahead_map( + struct xfs_buftarg *target, + struct xfs_buf_map *map, + int nmaps, + const struct xfs_buf_ops *ops) +{ + if (bdi_read_congested(target->bt_bdi)) + return; + + xfs_buf_read_map(target, map, nmaps, + XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); +} + +/* + * Read an uncached buffer from disk. Allocates and returns a locked + * buffer containing the disk contents or nothing. + */ +int +xfs_buf_read_uncached( + struct xfs_buftarg *target, + xfs_daddr_t daddr, + size_t numblks, + int flags, + struct xfs_buf **bpp, + const struct xfs_buf_ops *ops) +{ + struct xfs_buf *bp; + + *bpp = NULL; + + bp = xfs_buf_get_uncached(target, numblks, flags); + if (!bp) + return -ENOMEM; + + /* set up the buffer for a read IO */ + ASSERT(bp->b_map_count == 1); + bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ + bp->b_maps[0].bm_bn = daddr; + bp->b_flags |= XBF_READ; + bp->b_ops = ops; + + xfs_buf_submit_wait(bp); + if (bp->b_error) { + int error = bp->b_error; + xfs_buf_relse(bp); + return error; + } + + *bpp = bp; + return 0; +} + +/* + * Return a buffer allocated as an empty buffer and associated to external + * memory via xfs_buf_associate_memory() back to it's empty state. + */ +void +xfs_buf_set_empty( + struct xfs_buf *bp, + size_t numblks) +{ + if (bp->b_pages) + _xfs_buf_free_pages(bp); + + bp->b_pages = NULL; + bp->b_page_count = 0; + bp->b_addr = NULL; + bp->b_length = numblks; + bp->b_io_length = numblks; + + ASSERT(bp->b_map_count == 1); + bp->b_bn = XFS_BUF_DADDR_NULL; + bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; + bp->b_maps[0].bm_len = bp->b_length; +} + +static inline struct page * +mem_to_page( + void *addr) +{ + if ((!is_vmalloc_addr(addr))) { + return virt_to_page(addr); + } else { + return vmalloc_to_page(addr); + } +} + +int +xfs_buf_associate_memory( + xfs_buf_t *bp, + void *mem, + size_t len) +{ + int rval; + int i = 0; + unsigned long pageaddr; + unsigned long offset; + size_t buflen; + int page_count; + + pageaddr = (unsigned long)mem & PAGE_MASK; + offset = (unsigned long)mem - pageaddr; + buflen = PAGE_ALIGN(len + offset); + page_count = buflen >> PAGE_SHIFT; + + /* Free any previous set of page pointers */ + if (bp->b_pages) + _xfs_buf_free_pages(bp); + + bp->b_pages = NULL; + bp->b_addr = mem; + + rval = _xfs_buf_get_pages(bp, page_count); + if (rval) + return rval; + + bp->b_offset = offset; + + for (i = 0; i < bp->b_page_count; i++) { + bp->b_pages[i] = mem_to_page((void *)pageaddr); + pageaddr += PAGE_SIZE; + } + + bp->b_io_length = BTOBB(len); + bp->b_length = BTOBB(buflen); + + return 0; +} + +xfs_buf_t * +xfs_buf_get_uncached( + struct xfs_buftarg *target, + size_t numblks, + int flags) +{ + unsigned long page_count; + int error, i; + struct xfs_buf *bp; + DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); + + bp = _xfs_buf_alloc(target, &map, 1, 0); + if (unlikely(bp == NULL)) + goto fail; + + page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; + error = _xfs_buf_get_pages(bp, page_count); + if (error) + goto fail_free_buf; + + for (i = 0; i < page_count; i++) { + bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); + if (!bp->b_pages[i]) + goto fail_free_mem; + } + bp->b_flags |= _XBF_PAGES; + + error = _xfs_buf_map_pages(bp, 0); + if (unlikely(error)) { + xfs_warn(target->bt_mount, + "%s: failed to map pages", __func__); + goto fail_free_mem; + } + + trace_xfs_buf_get_uncached(bp, _RET_IP_); + return bp; + + fail_free_mem: + while (--i >= 0) + __free_page(bp->b_pages[i]); + _xfs_buf_free_pages(bp); + fail_free_buf: + xfs_buf_free_maps(bp); + kmem_zone_free(xfs_buf_zone, bp); + fail: + return NULL; +} + +/* + * Increment reference count on buffer, to hold the buffer concurrently + * with another thread which may release (free) the buffer asynchronously. + * Must hold the buffer already to call this function. + */ +void +xfs_buf_hold( + xfs_buf_t *bp) +{ + trace_xfs_buf_hold(bp, _RET_IP_); + atomic_inc(&bp->b_hold); +} + +/* + * Releases a hold on the specified buffer. If the + * the hold count is 1, calls xfs_buf_free. + */ +void +xfs_buf_rele( + xfs_buf_t *bp) +{ + struct xfs_perag *pag = bp->b_pag; + + trace_xfs_buf_rele(bp, _RET_IP_); + + if (!pag) { + ASSERT(list_empty(&bp->b_lru)); + ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); + if (atomic_dec_and_test(&bp->b_hold)) + xfs_buf_free(bp); + return; + } + + ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); + + ASSERT(atomic_read(&bp->b_hold) > 0); + if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { + spin_lock(&bp->b_lock); + if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { + /* + * If the buffer is added to the LRU take a new + * reference to the buffer for the LRU and clear the + * (now stale) dispose list state flag + */ + if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { + bp->b_state &= ~XFS_BSTATE_DISPOSE; + atomic_inc(&bp->b_hold); + } + spin_unlock(&bp->b_lock); + spin_unlock(&pag->pag_buf_lock); + } else { + /* + * most of the time buffers will already be removed from + * the LRU, so optimise that case by checking for the + * XFS_BSTATE_DISPOSE flag indicating the last list the + * buffer was on was the disposal list + */ + if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { + list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); + } else { + ASSERT(list_empty(&bp->b_lru)); + } + spin_unlock(&bp->b_lock); + + ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); + rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + xfs_buf_free(bp); + } + } +} + + +/* + * Lock a buffer object, if it is not already locked. + * + * If we come across a stale, pinned, locked buffer, we know that we are + * being asked to lock a buffer that has been reallocated. Because it is + * pinned, we know that the log has not been pushed to disk and hence it + * will still be locked. Rather than continuing to have trylock attempts + * fail until someone else pushes the log, push it ourselves before + * returning. This means that the xfsaild will not get stuck trying + * to push on stale inode buffers. + */ +int +xfs_buf_trylock( + struct xfs_buf *bp) +{ + int locked; + + locked = down_trylock(&bp->b_sema) == 0; + if (locked) + XB_SET_OWNER(bp); + + trace_xfs_buf_trylock(bp, _RET_IP_); + return locked; +} + +/* + * Lock a buffer object. + * + * If we come across a stale, pinned, locked buffer, we know that we + * are being asked to lock a buffer that has been reallocated. Because + * it is pinned, we know that the log has not been pushed to disk and + * hence it will still be locked. Rather than sleeping until someone + * else pushes the log, push it ourselves before trying to get the lock. + */ +void +xfs_buf_lock( + struct xfs_buf *bp) +{ + trace_xfs_buf_lock(bp, _RET_IP_); + + if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) + xfs_log_force(bp->b_target->bt_mount, 0); + down(&bp->b_sema); + XB_SET_OWNER(bp); + + trace_xfs_buf_lock_done(bp, _RET_IP_); +} + +void +xfs_buf_unlock( + struct xfs_buf *bp) +{ + XB_CLEAR_OWNER(bp); + up(&bp->b_sema); + + trace_xfs_buf_unlock(bp, _RET_IP_); +} + +STATIC void +xfs_buf_wait_unpin( + xfs_buf_t *bp) +{ + DECLARE_WAITQUEUE (wait, current); + + if (atomic_read(&bp->b_pin_count) == 0) + return; + + add_wait_queue(&bp->b_waiters, &wait); + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (atomic_read(&bp->b_pin_count) == 0) + break; + io_schedule(); + } + remove_wait_queue(&bp->b_waiters, &wait); + set_current_state(TASK_RUNNING); +} + +/* + * Buffer Utility Routines + */ + +void +xfs_buf_ioend( + struct xfs_buf *bp) +{ + bool read = bp->b_flags & XBF_READ; + + trace_xfs_buf_iodone(bp, _RET_IP_); + + bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); + + /* + * Pull in IO completion errors now. We are guaranteed to be running + * single threaded, so we don't need the lock to read b_io_error. + */ + if (!bp->b_error && bp->b_io_error) + xfs_buf_ioerror(bp, bp->b_io_error); + + /* Only validate buffers that were read without errors */ + if (read && !bp->b_error && bp->b_ops) { + ASSERT(!bp->b_iodone); + bp->b_ops->verify_read(bp); + } + + if (!bp->b_error) + bp->b_flags |= XBF_DONE; + + if (bp->b_iodone) + (*(bp->b_iodone))(bp); + else if (bp->b_flags & XBF_ASYNC) + xfs_buf_relse(bp); + else + complete(&bp->b_iowait); +} + +static void +xfs_buf_ioend_work( + struct work_struct *work) +{ + struct xfs_buf *bp = + container_of(work, xfs_buf_t, b_ioend_work); + + xfs_buf_ioend(bp); +} + +void +xfs_buf_ioend_async( + struct xfs_buf *bp) +{ + INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); + queue_work(bp->b_ioend_wq, &bp->b_ioend_work); +} + +void +xfs_buf_ioerror( + xfs_buf_t *bp, + int error) +{ + ASSERT(error <= 0 && error >= -1000); + bp->b_error = error; + trace_xfs_buf_ioerror(bp, error, _RET_IP_); +} + +void +xfs_buf_ioerror_alert( + struct xfs_buf *bp, + const char *func) +{ + xfs_alert(bp->b_target->bt_mount, +"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", + (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); +} + +int +xfs_bwrite( + struct xfs_buf *bp) +{ + int error; + + ASSERT(xfs_buf_islocked(bp)); + + bp->b_flags |= XBF_WRITE; + bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | + XBF_WRITE_FAIL | XBF_DONE); + + error = xfs_buf_submit_wait(bp); + if (error) { + xfs_force_shutdown(bp->b_target->bt_mount, + SHUTDOWN_META_IO_ERROR); + } + return error; +} + +STATIC void +xfs_buf_bio_end_io( + struct bio *bio, + int error) +{ + xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; + + /* + * don't overwrite existing errors - otherwise we can lose errors on + * buffers that require multiple bios to complete. + */ + if (error) { + spin_lock(&bp->b_lock); + if (!bp->b_io_error) + bp->b_io_error = error; + spin_unlock(&bp->b_lock); + } + + if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) + invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); + + if (atomic_dec_and_test(&bp->b_io_remaining) == 1) + xfs_buf_ioend_async(bp); + bio_put(bio); +} + +static void +xfs_buf_ioapply_map( + struct xfs_buf *bp, + int map, + int *buf_offset, + int *count, + int rw) +{ + int page_index; + int total_nr_pages = bp->b_page_count; + int nr_pages; + struct bio *bio; + sector_t sector = bp->b_maps[map].bm_bn; + int size; + int offset; + + total_nr_pages = bp->b_page_count; + + /* skip the pages in the buffer before the start offset */ + page_index = 0; + offset = *buf_offset; + while (offset >= PAGE_SIZE) { + page_index++; + offset -= PAGE_SIZE; + } + + /* + * Limit the IO size to the length of the current vector, and update the + * remaining IO count for the next time around. + */ + size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); + *count -= size; + *buf_offset += size; + +next_chunk: + atomic_inc(&bp->b_io_remaining); + nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); + if (nr_pages > total_nr_pages) + nr_pages = total_nr_pages; + + bio = bio_alloc(GFP_NOIO, nr_pages); + bio->bi_bdev = bp->b_target->bt_bdev; + bio->bi_iter.bi_sector = sector; + bio->bi_end_io = xfs_buf_bio_end_io; + bio->bi_private = bp; + + + for (; size && nr_pages; nr_pages--, page_index++) { + int rbytes, nbytes = PAGE_SIZE - offset; + + if (nbytes > size) + nbytes = size; + + rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, + offset); + if (rbytes < nbytes) + break; + + offset = 0; + sector += BTOBB(nbytes); + size -= nbytes; + total_nr_pages--; + } + + if (likely(bio->bi_iter.bi_size)) { + if (xfs_buf_is_vmapped(bp)) { + flush_kernel_vmap_range(bp->b_addr, + xfs_buf_vmap_len(bp)); + } + submit_bio(rw, bio); + if (size) + goto next_chunk; + } else { + /* + * This is guaranteed not to be the last io reference count + * because the caller (xfs_buf_submit) holds a count itself. + */ + atomic_dec(&bp->b_io_remaining); + xfs_buf_ioerror(bp, -EIO); + bio_put(bio); + } + +} + +STATIC void +_xfs_buf_ioapply( + struct xfs_buf *bp) +{ + struct blk_plug plug; + int rw; + int offset; + int size; + int i; + + /* + * Make sure we capture only current IO errors rather than stale errors + * left over from previous use of the buffer (e.g. failed readahead). + */ + bp->b_error = 0; + + /* + * Initialize the I/O completion workqueue if we haven't yet or the + * submitter has not opted to specify a custom one. + */ + if (!bp->b_ioend_wq) + bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; + + if (bp->b_flags & XBF_WRITE) { + if (bp->b_flags & XBF_SYNCIO) + rw = WRITE_SYNC; + else + rw = WRITE; + if (bp->b_flags & XBF_FUA) + rw |= REQ_FUA; + if (bp->b_flags & XBF_FLUSH) + rw |= REQ_FLUSH; + + /* + * Run the write verifier callback function if it exists. If + * this function fails it will mark the buffer with an error and + * the IO should not be dispatched. + */ + if (bp->b_ops) { + bp->b_ops->verify_write(bp); + if (bp->b_error) { + xfs_force_shutdown(bp->b_target->bt_mount, + SHUTDOWN_CORRUPT_INCORE); + return; + } + } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { + struct xfs_mount *mp = bp->b_target->bt_mount; + + /* + * non-crc filesystems don't attach verifiers during + * log recovery, so don't warn for such filesystems. + */ + if (xfs_sb_version_hascrc(&mp->m_sb)) { + xfs_warn(mp, + "%s: no ops on block 0x%llx/0x%x", + __func__, bp->b_bn, bp->b_length); + xfs_hex_dump(bp->b_addr, 64); + dump_stack(); + } + } + } else if (bp->b_flags & XBF_READ_AHEAD) { + rw = READA; + } else { + rw = READ; + } + + /* we only use the buffer cache for meta-data */ + rw |= REQ_META; + + /* + * Walk all the vectors issuing IO on them. Set up the initial offset + * into the buffer and the desired IO size before we start - + * _xfs_buf_ioapply_vec() will modify them appropriately for each + * subsequent call. + */ + offset = bp->b_offset; + size = BBTOB(bp->b_io_length); + blk_start_plug(&plug); + for (i = 0; i < bp->b_map_count; i++) { + xfs_buf_ioapply_map(bp, i, &offset, &size, rw); + if (bp->b_error) + break; + if (size <= 0) + break; /* all done */ + } + blk_finish_plug(&plug); +} + +/* + * Asynchronous IO submission path. This transfers the buffer lock ownership and + * the current reference to the IO. It is not safe to reference the buffer after + * a call to this function unless the caller holds an additional reference + * itself. + */ +void +xfs_buf_submit( + struct xfs_buf *bp) +{ + trace_xfs_buf_submit(bp, _RET_IP_); + + ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); + ASSERT(bp->b_flags & XBF_ASYNC); + + /* on shutdown we stale and complete the buffer immediately */ + if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { + xfs_buf_ioerror(bp, -EIO); + bp->b_flags &= ~XBF_DONE; + xfs_buf_stale(bp); + xfs_buf_ioend(bp); + return; + } + + if (bp->b_flags & XBF_WRITE) + xfs_buf_wait_unpin(bp); + + /* clear the internal error state to avoid spurious errors */ + bp->b_io_error = 0; + + /* + * The caller's reference is released during I/O completion. + * This occurs some time after the last b_io_remaining reference is + * released, so after we drop our Io reference we have to have some + * other reference to ensure the buffer doesn't go away from underneath + * us. Take a direct reference to ensure we have safe access to the + * buffer until we are finished with it. + */ + xfs_buf_hold(bp); + + /* + * Set the count to 1 initially, this will stop an I/O completion + * callout which happens before we have started all the I/O from calling + * xfs_buf_ioend too early. + */ + atomic_set(&bp->b_io_remaining, 1); + _xfs_buf_ioapply(bp); + + /* + * If _xfs_buf_ioapply failed, we can get back here with only the IO + * reference we took above. If we drop it to zero, run completion so + * that we don't return to the caller with completion still pending. + */ + if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { + if (bp->b_error) + xfs_buf_ioend(bp); + else + xfs_buf_ioend_async(bp); + } + + xfs_buf_rele(bp); + /* Note: it is not safe to reference bp now we've dropped our ref */ +} + +/* + * Synchronous buffer IO submission path, read or write. + */ +int +xfs_buf_submit_wait( + struct xfs_buf *bp) +{ + int error; + + trace_xfs_buf_submit_wait(bp, _RET_IP_); + + ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); + + if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { + xfs_buf_ioerror(bp, -EIO); + xfs_buf_stale(bp); + bp->b_flags &= ~XBF_DONE; + return -EIO; + } + + if (bp->b_flags & XBF_WRITE) + xfs_buf_wait_unpin(bp); + + /* clear the internal error state to avoid spurious errors */ + bp->b_io_error = 0; + + /* + * For synchronous IO, the IO does not inherit the submitters reference + * count, nor the buffer lock. Hence we cannot release the reference we + * are about to take until we've waited for all IO completion to occur, + * including any xfs_buf_ioend_async() work that may be pending. + */ + xfs_buf_hold(bp); + + /* + * Set the count to 1 initially, this will stop an I/O completion + * callout which happens before we have started all the I/O from calling + * xfs_buf_ioend too early. + */ + atomic_set(&bp->b_io_remaining, 1); + _xfs_buf_ioapply(bp); + + /* + * make sure we run completion synchronously if it raced with us and is + * already complete. + */ + if (atomic_dec_and_test(&bp->b_io_remaining) == 1) + xfs_buf_ioend(bp); + + /* wait for completion before gathering the error from the buffer */ + trace_xfs_buf_iowait(bp, _RET_IP_); + wait_for_completion(&bp->b_iowait); + trace_xfs_buf_iowait_done(bp, _RET_IP_); + error = bp->b_error; + + /* + * all done now, we can release the hold that keeps the buffer + * referenced for the entire IO. + */ + xfs_buf_rele(bp); + return error; +} + +xfs_caddr_t +xfs_buf_offset( + xfs_buf_t *bp, + size_t offset) +{ + struct page *page; + + if (bp->b_addr) + return bp->b_addr + offset; + + offset += bp->b_offset; + page = bp->b_pages[offset >> PAGE_SHIFT]; + return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); +} + +/* + * Move data into or out of a buffer. + */ +void +xfs_buf_iomove( + xfs_buf_t *bp, /* buffer to process */ + size_t boff, /* starting buffer offset */ + size_t bsize, /* length to copy */ + void *data, /* data address */ + xfs_buf_rw_t mode) /* read/write/zero flag */ +{ + size_t bend; + + bend = boff + bsize; + while (boff < bend) { + struct page *page; + int page_index, page_offset, csize; + + page_index = (boff + bp->b_offset) >> PAGE_SHIFT; + page_offset = (boff + bp->b_offset) & ~PAGE_MASK; + page = bp->b_pages[page_index]; + csize = min_t(size_t, PAGE_SIZE - page_offset, + BBTOB(bp->b_io_length) - boff); + + ASSERT((csize + page_offset) <= PAGE_SIZE); + + switch (mode) { + case XBRW_ZERO: + memset(page_address(page) + page_offset, 0, csize); + break; + case XBRW_READ: + memcpy(data, page_address(page) + page_offset, csize); + break; + case XBRW_WRITE: + memcpy(page_address(page) + page_offset, data, csize); + } + + boff += csize; + data += csize; + } +} + +/* + * Handling of buffer targets (buftargs). + */ + +/* + * Wait for any bufs with callbacks that have been submitted but have not yet + * returned. These buffers will have an elevated hold count, so wait on those + * while freeing all the buffers only held by the LRU. + */ +static enum lru_status +xfs_buftarg_wait_rele( + struct list_head *item, + struct list_lru_one *lru, + spinlock_t *lru_lock, + void *arg) + +{ + struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); + struct list_head *dispose = arg; + + if (atomic_read(&bp->b_hold) > 1) { + /* need to wait, so skip it this pass */ + trace_xfs_buf_wait_buftarg(bp, _RET_IP_); + return LRU_SKIP; + } + if (!spin_trylock(&bp->b_lock)) + return LRU_SKIP; + + /* + * clear the LRU reference count so the buffer doesn't get + * ignored in xfs_buf_rele(). + */ + atomic_set(&bp->b_lru_ref, 0); + bp->b_state |= XFS_BSTATE_DISPOSE; + list_lru_isolate_move(lru, item, dispose); + spin_unlock(&bp->b_lock); + return LRU_REMOVED; +} + +void +xfs_wait_buftarg( + struct xfs_buftarg *btp) +{ + LIST_HEAD(dispose); + int loop = 0; + + /* loop until there is nothing left on the lru list. */ + while (list_lru_count(&btp->bt_lru)) { + list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, + &dispose, LONG_MAX); + + while (!list_empty(&dispose)) { + struct xfs_buf *bp; + bp = list_first_entry(&dispose, struct xfs_buf, b_lru); + list_del_init(&bp->b_lru); + if (bp->b_flags & XBF_WRITE_FAIL) { + xfs_alert(btp->bt_mount, +"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n" +"Please run xfs_repair to determine the extent of the problem.", + (long long)bp->b_bn); + } + xfs_buf_rele(bp); + } + if (loop++ != 0) + delay(100); + } +} + +static enum lru_status +xfs_buftarg_isolate( + struct list_head *item, + struct list_lru_one *lru, + spinlock_t *lru_lock, + void *arg) +{ + struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); + struct list_head *dispose = arg; + + /* + * we are inverting the lru lock/bp->b_lock here, so use a trylock. + * If we fail to get the lock, just skip it. + */ + if (!spin_trylock(&bp->b_lock)) + return LRU_SKIP; + /* + * Decrement the b_lru_ref count unless the value is already + * zero. If the value is already zero, we need to reclaim the + * buffer, otherwise it gets another trip through the LRU. + */ + if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { + spin_unlock(&bp->b_lock); + return LRU_ROTATE; + } + + bp->b_state |= XFS_BSTATE_DISPOSE; + list_lru_isolate_move(lru, item, dispose); + spin_unlock(&bp->b_lock); + return LRU_REMOVED; +} + +static unsigned long +xfs_buftarg_shrink_scan( + struct shrinker *shrink, + struct shrink_control *sc) +{ + struct xfs_buftarg *btp = container_of(shrink, + struct xfs_buftarg, bt_shrinker); + LIST_HEAD(dispose); + unsigned long freed; + + freed = list_lru_shrink_walk(&btp->bt_lru, sc, + xfs_buftarg_isolate, &dispose); + + while (!list_empty(&dispose)) { + struct xfs_buf *bp; + bp = list_first_entry(&dispose, struct xfs_buf, b_lru); + list_del_init(&bp->b_lru); + xfs_buf_rele(bp); + } + + return freed; +} + +static unsigned long +xfs_buftarg_shrink_count( + struct shrinker *shrink, + struct shrink_control *sc) +{ + struct xfs_buftarg *btp = container_of(shrink, + struct xfs_buftarg, bt_shrinker); + return list_lru_shrink_count(&btp->bt_lru, sc); +} + +void +xfs_free_buftarg( + struct xfs_mount *mp, + struct xfs_buftarg *btp) +{ + unregister_shrinker(&btp->bt_shrinker); + list_lru_destroy(&btp->bt_lru); + + if (mp->m_flags & XFS_MOUNT_BARRIER) + xfs_blkdev_issue_flush(btp); + + kmem_free(btp); +} + +int +xfs_setsize_buftarg( + xfs_buftarg_t *btp, + unsigned int sectorsize) +{ + /* Set up metadata sector size info */ + btp->bt_meta_sectorsize = sectorsize; + btp->bt_meta_sectormask = sectorsize - 1; + + if (set_blocksize(btp->bt_bdev, sectorsize)) { + char name[BDEVNAME_SIZE]; + + bdevname(btp->bt_bdev, name); + + xfs_warn(btp->bt_mount, + "Cannot set_blocksize to %u on device %s", + sectorsize, name); + return -EINVAL; + } + + /* Set up device logical sector size mask */ + btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); + btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; + + return 0; +} + +/* + * When allocating the initial buffer target we have not yet + * read in the superblock, so don't know what sized sectors + * are being used at this early stage. Play safe. + */ +STATIC int +xfs_setsize_buftarg_early( + xfs_buftarg_t *btp, + struct block_device *bdev) +{ + return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); +} + +xfs_buftarg_t * +xfs_alloc_buftarg( + struct xfs_mount *mp, + struct block_device *bdev) +{ + xfs_buftarg_t *btp; + + btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); + + btp->bt_mount = mp; + btp->bt_dev = bdev->bd_dev; + btp->bt_bdev = bdev; + btp->bt_bdi = blk_get_backing_dev_info(bdev); + + if (xfs_setsize_buftarg_early(btp, bdev)) + goto error; + + if (list_lru_init(&btp->bt_lru)) + goto error; + + btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; + btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; + btp->bt_shrinker.seeks = DEFAULT_SEEKS; + btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; + register_shrinker(&btp->bt_shrinker); + return btp; + +error: + kmem_free(btp); + return NULL; +} + +/* + * Add a buffer to the delayed write list. + * + * This queues a buffer for writeout if it hasn't already been. Note that + * neither this routine nor the buffer list submission functions perform + * any internal synchronization. It is expected that the lists are thread-local + * to the callers. + * + * Returns true if we queued up the buffer, or false if it already had + * been on the buffer list. + */ +bool +xfs_buf_delwri_queue( + struct xfs_buf *bp, + struct list_head *list) +{ + ASSERT(xfs_buf_islocked(bp)); + ASSERT(!(bp->b_flags & XBF_READ)); + + /* + * If the buffer is already marked delwri it already is queued up + * by someone else for imediate writeout. Just ignore it in that + * case. + */ + if (bp->b_flags & _XBF_DELWRI_Q) { + trace_xfs_buf_delwri_queued(bp, _RET_IP_); + return false; + } + + trace_xfs_buf_delwri_queue(bp, _RET_IP_); + + /* + * If a buffer gets written out synchronously or marked stale while it + * is on a delwri list we lazily remove it. To do this, the other party + * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. + * It remains referenced and on the list. In a rare corner case it + * might get readded to a delwri list after the synchronous writeout, in + * which case we need just need to re-add the flag here. + */ + bp->b_flags |= _XBF_DELWRI_Q; + if (list_empty(&bp->b_list)) { + atomic_inc(&bp->b_hold); + list_add_tail(&bp->b_list, list); + } + + return true; +} + +/* + * Compare function is more complex than it needs to be because + * the return value is only 32 bits and we are doing comparisons + * on 64 bit values + */ +static int +xfs_buf_cmp( + void *priv, + struct list_head *a, + struct list_head *b) +{ + struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); + struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); + xfs_daddr_t diff; + + diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; + if (diff < 0) + return -1; + if (diff > 0) + return 1; + return 0; +} + +static int +__xfs_buf_delwri_submit( + struct list_head *buffer_list, + struct list_head *io_list, + bool wait) +{ + struct blk_plug plug; + struct xfs_buf *bp, *n; + int pinned = 0; + + list_for_each_entry_safe(bp, n, buffer_list, b_list) { + if (!wait) { + if (xfs_buf_ispinned(bp)) { + pinned++; + continue; + } + if (!xfs_buf_trylock(bp)) + continue; + } else { + xfs_buf_lock(bp); + } + + /* + * Someone else might have written the buffer synchronously or + * marked it stale in the meantime. In that case only the + * _XBF_DELWRI_Q flag got cleared, and we have to drop the + * reference and remove it from the list here. + */ + if (!(bp->b_flags & _XBF_DELWRI_Q)) { + list_del_init(&bp->b_list); + xfs_buf_relse(bp); + continue; + } + + list_move_tail(&bp->b_list, io_list); + trace_xfs_buf_delwri_split(bp, _RET_IP_); + } + + list_sort(NULL, io_list, xfs_buf_cmp); + + blk_start_plug(&plug); + list_for_each_entry_safe(bp, n, io_list, b_list) { + bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL); + bp->b_flags |= XBF_WRITE | XBF_ASYNC; + + /* + * we do all Io submission async. This means if we need to wait + * for IO completion we need to take an extra reference so the + * buffer is still valid on the other side. + */ + if (wait) + xfs_buf_hold(bp); + else + list_del_init(&bp->b_list); + + xfs_buf_submit(bp); + } + blk_finish_plug(&plug); + + return pinned; +} + +/* + * Write out a buffer list asynchronously. + * + * This will take the @buffer_list, write all non-locked and non-pinned buffers + * out and not wait for I/O completion on any of the buffers. This interface + * is only safely useable for callers that can track I/O completion by higher + * level means, e.g. AIL pushing as the @buffer_list is consumed in this + * function. + */ +int +xfs_buf_delwri_submit_nowait( + struct list_head *buffer_list) +{ + LIST_HEAD (io_list); + return __xfs_buf_delwri_submit(buffer_list, &io_list, false); +} + +/* + * Write out a buffer list synchronously. + * + * This will take the @buffer_list, write all buffers out and wait for I/O + * completion on all of the buffers. @buffer_list is consumed by the function, + * so callers must have some other way of tracking buffers if they require such + * functionality. + */ +int +xfs_buf_delwri_submit( + struct list_head *buffer_list) +{ + LIST_HEAD (io_list); + int error = 0, error2; + struct xfs_buf *bp; + + __xfs_buf_delwri_submit(buffer_list, &io_list, true); + + /* Wait for IO to complete. */ + while (!list_empty(&io_list)) { + bp = list_first_entry(&io_list, struct xfs_buf, b_list); + + list_del_init(&bp->b_list); + + /* locking the buffer will wait for async IO completion. */ + xfs_buf_lock(bp); + error2 = bp->b_error; + xfs_buf_relse(bp); + if (!error) + error = error2; + } + + return error; +} + +int __init +xfs_buf_init(void) +{ + xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", + KM_ZONE_HWALIGN, NULL); + if (!xfs_buf_zone) + goto out; + + return 0; + + out: + return -ENOMEM; +} + +void +xfs_buf_terminate(void) +{ + kmem_zone_destroy(xfs_buf_zone); +} -- cgit 1.2.3-korg