From 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 Mon Sep 17 00:00:00 2001 From: Yunhong Jiang Date: Tue, 4 Aug 2015 12:17:53 -0700 Subject: Add the rt linux 4.1.3-rt3 as base Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang --- kernel/drivers/misc/mei/hw-me.c | 998 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 998 insertions(+) create mode 100644 kernel/drivers/misc/mei/hw-me.c (limited to 'kernel/drivers/misc/mei/hw-me.c') diff --git a/kernel/drivers/misc/mei/hw-me.c b/kernel/drivers/misc/mei/hw-me.c new file mode 100644 index 000000000..43d7101ff --- /dev/null +++ b/kernel/drivers/misc/mei/hw-me.c @@ -0,0 +1,998 @@ +/* + * + * Intel Management Engine Interface (Intel MEI) Linux driver + * Copyright (c) 2003-2012, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + */ + +#include + +#include +#include + +#include "mei_dev.h" +#include "hbm.h" + +#include "hw-me.h" +#include "hw-me-regs.h" + +#include "mei-trace.h" + +/** + * mei_me_reg_read - Reads 32bit data from the mei device + * + * @hw: the me hardware structure + * @offset: offset from which to read the data + * + * Return: register value (u32) + */ +static inline u32 mei_me_reg_read(const struct mei_me_hw *hw, + unsigned long offset) +{ + return ioread32(hw->mem_addr + offset); +} + + +/** + * mei_me_reg_write - Writes 32bit data to the mei device + * + * @hw: the me hardware structure + * @offset: offset from which to write the data + * @value: register value to write (u32) + */ +static inline void mei_me_reg_write(const struct mei_me_hw *hw, + unsigned long offset, u32 value) +{ + iowrite32(value, hw->mem_addr + offset); +} + +/** + * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer + * read window register + * + * @dev: the device structure + * + * Return: ME_CB_RW register value (u32) + */ +static inline u32 mei_me_mecbrw_read(const struct mei_device *dev) +{ + return mei_me_reg_read(to_me_hw(dev), ME_CB_RW); +} + +/** + * mei_me_hcbww_write - write 32bit data to the host circular buffer + * + * @dev: the device structure + * @data: 32bit data to be written to the host circular buffer + */ +static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data) +{ + mei_me_reg_write(to_me_hw(dev), H_CB_WW, data); +} + +/** + * mei_me_mecsr_read - Reads 32bit data from the ME CSR + * + * @dev: the device structure + * + * Return: ME_CSR_HA register value (u32) + */ +static inline u32 mei_me_mecsr_read(const struct mei_device *dev) +{ + u32 reg; + + reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA); + trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg); + + return reg; +} + +/** + * mei_hcsr_read - Reads 32bit data from the host CSR + * + * @dev: the device structure + * + * Return: H_CSR register value (u32) + */ +static inline u32 mei_hcsr_read(const struct mei_device *dev) +{ + u32 reg; + + reg = mei_me_reg_read(to_me_hw(dev), H_CSR); + trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg); + + return reg; +} + +/** + * mei_hcsr_write - writes H_CSR register to the mei device + * + * @dev: the device structure + * @reg: new register value + */ +static inline void mei_hcsr_write(struct mei_device *dev, u32 reg) +{ + trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg); + mei_me_reg_write(to_me_hw(dev), H_CSR, reg); +} + +/** + * mei_hcsr_set - writes H_CSR register to the mei device, + * and ignores the H_IS bit for it is write-one-to-zero. + * + * @dev: the device structure + * @reg: new register value + */ +static inline void mei_hcsr_set(struct mei_device *dev, u32 reg) +{ + reg &= ~H_IS; + mei_hcsr_write(dev, reg); +} + +/** + * mei_me_fw_status - read fw status register from pci config space + * + * @dev: mei device + * @fw_status: fw status register values + * + * Return: 0 on success, error otherwise + */ +static int mei_me_fw_status(struct mei_device *dev, + struct mei_fw_status *fw_status) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + struct mei_me_hw *hw = to_me_hw(dev); + const struct mei_fw_status *fw_src = &hw->cfg->fw_status; + int ret; + int i; + + if (!fw_status) + return -EINVAL; + + fw_status->count = fw_src->count; + for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) { + ret = pci_read_config_dword(pdev, + fw_src->status[i], &fw_status->status[i]); + if (ret) + return ret; + } + + return 0; +} + +/** + * mei_me_hw_config - configure hw dependent settings + * + * @dev: mei device + */ +static void mei_me_hw_config(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + u32 hcsr = mei_hcsr_read(dev); + /* Doesn't change in runtime */ + dev->hbuf_depth = (hcsr & H_CBD) >> 24; + + hw->pg_state = MEI_PG_OFF; +} + +/** + * mei_me_pg_state - translate internal pg state + * to the mei power gating state + * + * @dev: mei device + * + * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise + */ +static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + + return hw->pg_state; +} + +/** + * mei_me_intr_clear - clear and stop interrupts + * + * @dev: the device structure + */ +static void mei_me_intr_clear(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + if ((hcsr & H_IS) == H_IS) + mei_hcsr_write(dev, hcsr); +} +/** + * mei_me_intr_enable - enables mei device interrupts + * + * @dev: the device structure + */ +static void mei_me_intr_enable(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + hcsr |= H_IE; + mei_hcsr_set(dev, hcsr); +} + +/** + * mei_me_intr_disable - disables mei device interrupts + * + * @dev: the device structure + */ +static void mei_me_intr_disable(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + hcsr &= ~H_IE; + mei_hcsr_set(dev, hcsr); +} + +/** + * mei_me_hw_reset_release - release device from the reset + * + * @dev: the device structure + */ +static void mei_me_hw_reset_release(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + hcsr |= H_IG; + hcsr &= ~H_RST; + mei_hcsr_set(dev, hcsr); + + /* complete this write before we set host ready on another CPU */ + mmiowb(); +} +/** + * mei_me_hw_reset - resets fw via mei csr register. + * + * @dev: the device structure + * @intr_enable: if interrupt should be enabled after reset. + * + * Return: always 0 + */ +static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable) +{ + u32 hcsr = mei_hcsr_read(dev); + + /* H_RST may be found lit before reset is started, + * for example if preceding reset flow hasn't completed. + * In that case asserting H_RST will be ignored, therefore + * we need to clean H_RST bit to start a successful reset sequence. + */ + if ((hcsr & H_RST) == H_RST) { + dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr); + hcsr &= ~H_RST; + mei_hcsr_set(dev, hcsr); + hcsr = mei_hcsr_read(dev); + } + + hcsr |= H_RST | H_IG | H_IS; + + if (intr_enable) + hcsr |= H_IE; + else + hcsr &= ~H_IE; + + dev->recvd_hw_ready = false; + mei_hcsr_write(dev, hcsr); + + /* + * Host reads the H_CSR once to ensure that the + * posted write to H_CSR completes. + */ + hcsr = mei_hcsr_read(dev); + + if ((hcsr & H_RST) == 0) + dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr); + + if ((hcsr & H_RDY) == H_RDY) + dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr); + + if (intr_enable == false) + mei_me_hw_reset_release(dev); + + return 0; +} + +/** + * mei_me_host_set_ready - enable device + * + * @dev: mei device + */ +static void mei_me_host_set_ready(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + hcsr |= H_IE | H_IG | H_RDY; + mei_hcsr_set(dev, hcsr); +} + +/** + * mei_me_host_is_ready - check whether the host has turned ready + * + * @dev: mei device + * Return: bool + */ +static bool mei_me_host_is_ready(struct mei_device *dev) +{ + u32 hcsr = mei_hcsr_read(dev); + + return (hcsr & H_RDY) == H_RDY; +} + +/** + * mei_me_hw_is_ready - check whether the me(hw) has turned ready + * + * @dev: mei device + * Return: bool + */ +static bool mei_me_hw_is_ready(struct mei_device *dev) +{ + u32 mecsr = mei_me_mecsr_read(dev); + + return (mecsr & ME_RDY_HRA) == ME_RDY_HRA; +} + +/** + * mei_me_hw_ready_wait - wait until the me(hw) has turned ready + * or timeout is reached + * + * @dev: mei device + * Return: 0 on success, error otherwise + */ +static int mei_me_hw_ready_wait(struct mei_device *dev) +{ + mutex_unlock(&dev->device_lock); + wait_event_timeout(dev->wait_hw_ready, + dev->recvd_hw_ready, + mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT)); + mutex_lock(&dev->device_lock); + if (!dev->recvd_hw_ready) { + dev_err(dev->dev, "wait hw ready failed\n"); + return -ETIME; + } + + mei_me_hw_reset_release(dev); + dev->recvd_hw_ready = false; + return 0; +} + +/** + * mei_me_hw_start - hw start routine + * + * @dev: mei device + * Return: 0 on success, error otherwise + */ +static int mei_me_hw_start(struct mei_device *dev) +{ + int ret = mei_me_hw_ready_wait(dev); + + if (ret) + return ret; + dev_dbg(dev->dev, "hw is ready\n"); + + mei_me_host_set_ready(dev); + return ret; +} + + +/** + * mei_hbuf_filled_slots - gets number of device filled buffer slots + * + * @dev: the device structure + * + * Return: number of filled slots + */ +static unsigned char mei_hbuf_filled_slots(struct mei_device *dev) +{ + u32 hcsr; + char read_ptr, write_ptr; + + hcsr = mei_hcsr_read(dev); + + read_ptr = (char) ((hcsr & H_CBRP) >> 8); + write_ptr = (char) ((hcsr & H_CBWP) >> 16); + + return (unsigned char) (write_ptr - read_ptr); +} + +/** + * mei_me_hbuf_is_empty - checks if host buffer is empty. + * + * @dev: the device structure + * + * Return: true if empty, false - otherwise. + */ +static bool mei_me_hbuf_is_empty(struct mei_device *dev) +{ + return mei_hbuf_filled_slots(dev) == 0; +} + +/** + * mei_me_hbuf_empty_slots - counts write empty slots. + * + * @dev: the device structure + * + * Return: -EOVERFLOW if overflow, otherwise empty slots count + */ +static int mei_me_hbuf_empty_slots(struct mei_device *dev) +{ + unsigned char filled_slots, empty_slots; + + filled_slots = mei_hbuf_filled_slots(dev); + empty_slots = dev->hbuf_depth - filled_slots; + + /* check for overflow */ + if (filled_slots > dev->hbuf_depth) + return -EOVERFLOW; + + return empty_slots; +} + +/** + * mei_me_hbuf_max_len - returns size of hw buffer. + * + * @dev: the device structure + * + * Return: size of hw buffer in bytes + */ +static size_t mei_me_hbuf_max_len(const struct mei_device *dev) +{ + return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr); +} + + +/** + * mei_me_write_message - writes a message to mei device. + * + * @dev: the device structure + * @header: mei HECI header of message + * @buf: message payload will be written + * + * Return: -EIO if write has failed + */ +static int mei_me_write_message(struct mei_device *dev, + struct mei_msg_hdr *header, + unsigned char *buf) +{ + unsigned long rem; + unsigned long length = header->length; + u32 *reg_buf = (u32 *)buf; + u32 hcsr; + u32 dw_cnt; + int i; + int empty_slots; + + dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header)); + + empty_slots = mei_hbuf_empty_slots(dev); + dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots); + + dw_cnt = mei_data2slots(length); + if (empty_slots < 0 || dw_cnt > empty_slots) + return -EMSGSIZE; + + mei_me_hcbww_write(dev, *((u32 *) header)); + + for (i = 0; i < length / 4; i++) + mei_me_hcbww_write(dev, reg_buf[i]); + + rem = length & 0x3; + if (rem > 0) { + u32 reg = 0; + + memcpy(®, &buf[length - rem], rem); + mei_me_hcbww_write(dev, reg); + } + + hcsr = mei_hcsr_read(dev) | H_IG; + mei_hcsr_set(dev, hcsr); + if (!mei_me_hw_is_ready(dev)) + return -EIO; + + return 0; +} + +/** + * mei_me_count_full_read_slots - counts read full slots. + * + * @dev: the device structure + * + * Return: -EOVERFLOW if overflow, otherwise filled slots count + */ +static int mei_me_count_full_read_slots(struct mei_device *dev) +{ + u32 me_csr; + char read_ptr, write_ptr; + unsigned char buffer_depth, filled_slots; + + me_csr = mei_me_mecsr_read(dev); + buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24); + read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8); + write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16); + filled_slots = (unsigned char) (write_ptr - read_ptr); + + /* check for overflow */ + if (filled_slots > buffer_depth) + return -EOVERFLOW; + + dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots); + return (int)filled_slots; +} + +/** + * mei_me_read_slots - reads a message from mei device. + * + * @dev: the device structure + * @buffer: message buffer will be written + * @buffer_length: message size will be read + * + * Return: always 0 + */ +static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer, + unsigned long buffer_length) +{ + u32 *reg_buf = (u32 *)buffer; + u32 hcsr; + + for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32)) + *reg_buf++ = mei_me_mecbrw_read(dev); + + if (buffer_length > 0) { + u32 reg = mei_me_mecbrw_read(dev); + + memcpy(reg_buf, ®, buffer_length); + } + + hcsr = mei_hcsr_read(dev) | H_IG; + mei_hcsr_set(dev, hcsr); + return 0; +} + +/** + * mei_me_pg_set - write pg enter register + * + * @dev: the device structure + */ +static void mei_me_pg_set(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + u32 reg; + + reg = mei_me_reg_read(hw, H_HPG_CSR); + trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); + + reg |= H_HPG_CSR_PGI; + + trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); + mei_me_reg_write(hw, H_HPG_CSR, reg); +} + +/** + * mei_me_pg_unset - write pg exit register + * + * @dev: the device structure + */ +static void mei_me_pg_unset(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + u32 reg; + + reg = mei_me_reg_read(hw, H_HPG_CSR); + trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); + + WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n"); + + reg |= H_HPG_CSR_PGIHEXR; + + trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); + mei_me_reg_write(hw, H_HPG_CSR, reg); +} + +/** + * mei_me_pg_enter_sync - perform pg entry procedure + * + * @dev: the device structure + * + * Return: 0 on success an error code otherwise + */ +int mei_me_pg_enter_sync(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); + int ret; + + dev->pg_event = MEI_PG_EVENT_WAIT; + + ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD); + if (ret) + return ret; + + mutex_unlock(&dev->device_lock); + wait_event_timeout(dev->wait_pg, + dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); + mutex_lock(&dev->device_lock); + + if (dev->pg_event == MEI_PG_EVENT_RECEIVED) { + mei_me_pg_set(dev); + ret = 0; + } else { + ret = -ETIME; + } + + dev->pg_event = MEI_PG_EVENT_IDLE; + hw->pg_state = MEI_PG_ON; + + return ret; +} + +/** + * mei_me_pg_exit_sync - perform pg exit procedure + * + * @dev: the device structure + * + * Return: 0 on success an error code otherwise + */ +int mei_me_pg_exit_sync(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); + int ret; + + if (dev->pg_event == MEI_PG_EVENT_RECEIVED) + goto reply; + + dev->pg_event = MEI_PG_EVENT_WAIT; + + mei_me_pg_unset(dev); + + mutex_unlock(&dev->device_lock); + wait_event_timeout(dev->wait_pg, + dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); + mutex_lock(&dev->device_lock); + +reply: + if (dev->pg_event != MEI_PG_EVENT_RECEIVED) { + ret = -ETIME; + goto out; + } + + dev->pg_event = MEI_PG_EVENT_INTR_WAIT; + ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD); + if (ret) + return ret; + + mutex_unlock(&dev->device_lock); + wait_event_timeout(dev->wait_pg, + dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout); + mutex_lock(&dev->device_lock); + + if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED) + ret = 0; + else + ret = -ETIME; + +out: + dev->pg_event = MEI_PG_EVENT_IDLE; + hw->pg_state = MEI_PG_OFF; + + return ret; +} + +/** + * mei_me_pg_in_transition - is device now in pg transition + * + * @dev: the device structure + * + * Return: true if in pg transition, false otherwise + */ +static bool mei_me_pg_in_transition(struct mei_device *dev) +{ + return dev->pg_event >= MEI_PG_EVENT_WAIT && + dev->pg_event <= MEI_PG_EVENT_INTR_WAIT; +} + +/** + * mei_me_pg_is_enabled - detect if PG is supported by HW + * + * @dev: the device structure + * + * Return: true is pg supported, false otherwise + */ +static bool mei_me_pg_is_enabled(struct mei_device *dev) +{ + u32 reg = mei_me_mecsr_read(dev); + + if ((reg & ME_PGIC_HRA) == 0) + goto notsupported; + + if (!dev->hbm_f_pg_supported) + goto notsupported; + + return true; + +notsupported: + dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n", + !!(reg & ME_PGIC_HRA), + dev->version.major_version, + dev->version.minor_version, + HBM_MAJOR_VERSION_PGI, + HBM_MINOR_VERSION_PGI); + + return false; +} + +/** + * mei_me_pg_intr - perform pg processing in interrupt thread handler + * + * @dev: the device structure + */ +static void mei_me_pg_intr(struct mei_device *dev) +{ + struct mei_me_hw *hw = to_me_hw(dev); + + if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT) + return; + + dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED; + hw->pg_state = MEI_PG_OFF; + if (waitqueue_active(&dev->wait_pg)) + wake_up(&dev->wait_pg); +} + +/** + * mei_me_irq_quick_handler - The ISR of the MEI device + * + * @irq: The irq number + * @dev_id: pointer to the device structure + * + * Return: irqreturn_t + */ + +irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id) +{ + struct mei_device *dev = (struct mei_device *) dev_id; + u32 hcsr = mei_hcsr_read(dev); + + if ((hcsr & H_IS) != H_IS) + return IRQ_NONE; + + /* clear H_IS bit in H_CSR */ + mei_hcsr_write(dev, hcsr); + + return IRQ_WAKE_THREAD; +} + +/** + * mei_me_irq_thread_handler - function called after ISR to handle the interrupt + * processing. + * + * @irq: The irq number + * @dev_id: pointer to the device structure + * + * Return: irqreturn_t + * + */ +irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id) +{ + struct mei_device *dev = (struct mei_device *) dev_id; + struct mei_cl_cb complete_list; + s32 slots; + int rets = 0; + + dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n"); + /* initialize our complete list */ + mutex_lock(&dev->device_lock); + mei_io_list_init(&complete_list); + + /* Ack the interrupt here + * In case of MSI we don't go through the quick handler */ + if (pci_dev_msi_enabled(to_pci_dev(dev->dev))) + mei_clear_interrupts(dev); + + /* check if ME wants a reset */ + if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) { + dev_warn(dev->dev, "FW not ready: resetting.\n"); + schedule_work(&dev->reset_work); + goto end; + } + + mei_me_pg_intr(dev); + + /* check if we need to start the dev */ + if (!mei_host_is_ready(dev)) { + if (mei_hw_is_ready(dev)) { + dev_dbg(dev->dev, "we need to start the dev.\n"); + dev->recvd_hw_ready = true; + wake_up(&dev->wait_hw_ready); + } else { + dev_dbg(dev->dev, "Spurious Interrupt\n"); + } + goto end; + } + /* check slots available for reading */ + slots = mei_count_full_read_slots(dev); + while (slots > 0) { + dev_dbg(dev->dev, "slots to read = %08x\n", slots); + rets = mei_irq_read_handler(dev, &complete_list, &slots); + /* There is a race between ME write and interrupt delivery: + * Not all data is always available immediately after the + * interrupt, so try to read again on the next interrupt. + */ + if (rets == -ENODATA) + break; + + if (rets && dev->dev_state != MEI_DEV_RESETTING) { + dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n", + rets); + schedule_work(&dev->reset_work); + goto end; + } + } + + dev->hbuf_is_ready = mei_hbuf_is_ready(dev); + + /* + * During PG handshake only allowed write is the replay to the + * PG exit message, so block calling write function + * if the pg event is in PG handshake + */ + if (dev->pg_event != MEI_PG_EVENT_WAIT && + dev->pg_event != MEI_PG_EVENT_RECEIVED) { + rets = mei_irq_write_handler(dev, &complete_list); + dev->hbuf_is_ready = mei_hbuf_is_ready(dev); + } + + mei_irq_compl_handler(dev, &complete_list); + +end: + dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets); + mutex_unlock(&dev->device_lock); + return IRQ_HANDLED; +} + +static const struct mei_hw_ops mei_me_hw_ops = { + + .fw_status = mei_me_fw_status, + .pg_state = mei_me_pg_state, + + .host_is_ready = mei_me_host_is_ready, + + .hw_is_ready = mei_me_hw_is_ready, + .hw_reset = mei_me_hw_reset, + .hw_config = mei_me_hw_config, + .hw_start = mei_me_hw_start, + + .pg_in_transition = mei_me_pg_in_transition, + .pg_is_enabled = mei_me_pg_is_enabled, + + .intr_clear = mei_me_intr_clear, + .intr_enable = mei_me_intr_enable, + .intr_disable = mei_me_intr_disable, + + .hbuf_free_slots = mei_me_hbuf_empty_slots, + .hbuf_is_ready = mei_me_hbuf_is_empty, + .hbuf_max_len = mei_me_hbuf_max_len, + + .write = mei_me_write_message, + + .rdbuf_full_slots = mei_me_count_full_read_slots, + .read_hdr = mei_me_mecbrw_read, + .read = mei_me_read_slots +}; + +static bool mei_me_fw_type_nm(struct pci_dev *pdev) +{ + u32 reg; + + pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®); + /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */ + return (reg & 0x600) == 0x200; +} + +#define MEI_CFG_FW_NM \ + .quirk_probe = mei_me_fw_type_nm + +static bool mei_me_fw_type_sps(struct pci_dev *pdev) +{ + u32 reg; + /* Read ME FW Status check for SPS Firmware */ + pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®); + /* if bits [19:16] = 15, running SPS Firmware */ + return (reg & 0xf0000) == 0xf0000; +} + +#define MEI_CFG_FW_SPS \ + .quirk_probe = mei_me_fw_type_sps + + +#define MEI_CFG_LEGACY_HFS \ + .fw_status.count = 0 + +#define MEI_CFG_ICH_HFS \ + .fw_status.count = 1, \ + .fw_status.status[0] = PCI_CFG_HFS_1 + +#define MEI_CFG_PCH_HFS \ + .fw_status.count = 2, \ + .fw_status.status[0] = PCI_CFG_HFS_1, \ + .fw_status.status[1] = PCI_CFG_HFS_2 + +#define MEI_CFG_PCH8_HFS \ + .fw_status.count = 6, \ + .fw_status.status[0] = PCI_CFG_HFS_1, \ + .fw_status.status[1] = PCI_CFG_HFS_2, \ + .fw_status.status[2] = PCI_CFG_HFS_3, \ + .fw_status.status[3] = PCI_CFG_HFS_4, \ + .fw_status.status[4] = PCI_CFG_HFS_5, \ + .fw_status.status[5] = PCI_CFG_HFS_6 + +/* ICH Legacy devices */ +const struct mei_cfg mei_me_legacy_cfg = { + MEI_CFG_LEGACY_HFS, +}; + +/* ICH devices */ +const struct mei_cfg mei_me_ich_cfg = { + MEI_CFG_ICH_HFS, +}; + +/* PCH devices */ +const struct mei_cfg mei_me_pch_cfg = { + MEI_CFG_PCH_HFS, +}; + + +/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */ +const struct mei_cfg mei_me_pch_cpt_pbg_cfg = { + MEI_CFG_PCH_HFS, + MEI_CFG_FW_NM, +}; + +/* PCH8 Lynx Point and newer devices */ +const struct mei_cfg mei_me_pch8_cfg = { + MEI_CFG_PCH8_HFS, +}; + +/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */ +const struct mei_cfg mei_me_pch8_sps_cfg = { + MEI_CFG_PCH8_HFS, + MEI_CFG_FW_SPS, +}; + +/** + * mei_me_dev_init - allocates and initializes the mei device structure + * + * @pdev: The pci device structure + * @cfg: per device generation config + * + * Return: The mei_device_device pointer on success, NULL on failure. + */ +struct mei_device *mei_me_dev_init(struct pci_dev *pdev, + const struct mei_cfg *cfg) +{ + struct mei_device *dev; + struct mei_me_hw *hw; + + dev = kzalloc(sizeof(struct mei_device) + + sizeof(struct mei_me_hw), GFP_KERNEL); + if (!dev) + return NULL; + hw = to_me_hw(dev); + + mei_device_init(dev, &pdev->dev, &mei_me_hw_ops); + hw->cfg = cfg; + return dev; +} + -- cgit 1.2.3-korg