From 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 Mon Sep 17 00:00:00 2001 From: Yunhong Jiang Date: Tue, 4 Aug 2015 12:17:53 -0700 Subject: Add the rt linux 4.1.3-rt3 as base Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang --- kernel/Documentation/networking/tuntap.txt | 227 +++++++++++++++++++++++++++++ 1 file changed, 227 insertions(+) create mode 100644 kernel/Documentation/networking/tuntap.txt (limited to 'kernel/Documentation/networking/tuntap.txt') diff --git a/kernel/Documentation/networking/tuntap.txt b/kernel/Documentation/networking/tuntap.txt new file mode 100644 index 000000000..949d5dcdd --- /dev/null +++ b/kernel/Documentation/networking/tuntap.txt @@ -0,0 +1,227 @@ +Universal TUN/TAP device driver. +Copyright (C) 1999-2000 Maxim Krasnyansky + + Linux, Solaris drivers + Copyright (C) 1999-2000 Maxim Krasnyansky + + FreeBSD TAP driver + Copyright (c) 1999-2000 Maksim Yevmenkin + + Revision of this document 2002 by Florian Thiel + +1. Description + TUN/TAP provides packet reception and transmission for user space programs. + It can be seen as a simple Point-to-Point or Ethernet device, which, + instead of receiving packets from physical media, receives them from + user space program and instead of sending packets via physical media + writes them to the user space program. + + In order to use the driver a program has to open /dev/net/tun and issue a + corresponding ioctl() to register a network device with the kernel. A network + device will appear as tunXX or tapXX, depending on the options chosen. When + the program closes the file descriptor, the network device and all + corresponding routes will disappear. + + Depending on the type of device chosen the userspace program has to read/write + IP packets (with tun) or ethernet frames (with tap). Which one is being used + depends on the flags given with the ioctl(). + + The package from http://vtun.sourceforge.net/tun contains two simple examples + for how to use tun and tap devices. Both programs work like a bridge between + two network interfaces. + br_select.c - bridge based on select system call. + br_sigio.c - bridge based on async io and SIGIO signal. + However, the best example is VTun http://vtun.sourceforge.net :)) + +2. Configuration + Create device node: + mkdir /dev/net (if it doesn't exist already) + mknod /dev/net/tun c 10 200 + + Set permissions: + e.g. chmod 0666 /dev/net/tun + There's no harm in allowing the device to be accessible by non-root users, + since CAP_NET_ADMIN is required for creating network devices or for + connecting to network devices which aren't owned by the user in question. + If you want to create persistent devices and give ownership of them to + unprivileged users, then you need the /dev/net/tun device to be usable by + those users. + + Driver module autoloading + + Make sure that "Kernel module loader" - module auto-loading + support is enabled in your kernel. The kernel should load it on + first access. + + Manual loading + insert the module by hand: + modprobe tun + + If you do it the latter way, you have to load the module every time you + need it, if you do it the other way it will be automatically loaded when + /dev/net/tun is being opened. + +3. Program interface + 3.1 Network device allocation: + + char *dev should be the name of the device with a format string (e.g. + "tun%d"), but (as far as I can see) this can be any valid network device name. + Note that the character pointer becomes overwritten with the real device name + (e.g. "tun0") + + #include + #include + + int tun_alloc(char *dev) + { + struct ifreq ifr; + int fd, err; + + if( (fd = open("/dev/net/tun", O_RDWR)) < 0 ) + return tun_alloc_old(dev); + + memset(&ifr, 0, sizeof(ifr)); + + /* Flags: IFF_TUN - TUN device (no Ethernet headers) + * IFF_TAP - TAP device + * + * IFF_NO_PI - Do not provide packet information + */ + ifr.ifr_flags = IFF_TUN; + if( *dev ) + strncpy(ifr.ifr_name, dev, IFNAMSIZ); + + if( (err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0 ){ + close(fd); + return err; + } + strcpy(dev, ifr.ifr_name); + return fd; + } + + 3.2 Frame format: + If flag IFF_NO_PI is not set each frame format is: + Flags [2 bytes] + Proto [2 bytes] + Raw protocol(IP, IPv6, etc) frame. + + 3.3 Multiqueue tuntap interface: + + From version 3.8, Linux supports multiqueue tuntap which can uses multiple + file descriptors (queues) to parallelize packets sending or receiving. The + device allocation is the same as before, and if user wants to create multiple + queues, TUNSETIFF with the same device name must be called many times with + IFF_MULTI_QUEUE flag. + + char *dev should be the name of the device, queues is the number of queues to + be created, fds is used to store and return the file descriptors (queues) + created to the caller. Each file descriptor were served as the interface of a + queue which could be accessed by userspace. + + #include + #include + + int tun_alloc_mq(char *dev, int queues, int *fds) + { + struct ifreq ifr; + int fd, err, i; + + if (!dev) + return -1; + + memset(&ifr, 0, sizeof(ifr)); + /* Flags: IFF_TUN - TUN device (no Ethernet headers) + * IFF_TAP - TAP device + * + * IFF_NO_PI - Do not provide packet information + * IFF_MULTI_QUEUE - Create a queue of multiqueue device + */ + ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE; + strcpy(ifr.ifr_name, dev); + + for (i = 0; i < queues; i++) { + if ((fd = open("/dev/net/tun", O_RDWR)) < 0) + goto err; + err = ioctl(fd, TUNSETIFF, (void *)&ifr); + if (err) { + close(fd); + goto err; + } + fds[i] = fd; + } + + return 0; + err: + for (--i; i >= 0; i--) + close(fds[i]); + return err; + } + + A new ioctl(TUNSETQUEUE) were introduced to enable or disable a queue. When + calling it with IFF_DETACH_QUEUE flag, the queue were disabled. And when + calling it with IFF_ATTACH_QUEUE flag, the queue were enabled. The queue were + enabled by default after it was created through TUNSETIFF. + + fd is the file descriptor (queue) that we want to enable or disable, when + enable is true we enable it, otherwise we disable it + + #include + #include + + int tun_set_queue(int fd, int enable) + { + struct ifreq ifr; + + memset(&ifr, 0, sizeof(ifr)); + + if (enable) + ifr.ifr_flags = IFF_ATTACH_QUEUE; + else + ifr.ifr_flags = IFF_DETACH_QUEUE; + + return ioctl(fd, TUNSETQUEUE, (void *)&ifr); + } + +Universal TUN/TAP device driver Frequently Asked Question. + +1. What platforms are supported by TUN/TAP driver ? +Currently driver has been written for 3 Unices: + Linux kernels 2.2.x, 2.4.x + FreeBSD 3.x, 4.x, 5.x + Solaris 2.6, 7.0, 8.0 + +2. What is TUN/TAP driver used for? +As mentioned above, main purpose of TUN/TAP driver is tunneling. +It is used by VTun (http://vtun.sourceforge.net). + +Another interesting application using TUN/TAP is pipsecd +(http://perso.enst.fr/~beyssac/pipsec/), a userspace IPSec +implementation that can use complete kernel routing (unlike FreeS/WAN). + +3. How does Virtual network device actually work ? +Virtual network device can be viewed as a simple Point-to-Point or +Ethernet device, which instead of receiving packets from a physical +media, receives them from user space program and instead of sending +packets via physical media sends them to the user space program. + +Let's say that you configured IPX on the tap0, then whenever +the kernel sends an IPX packet to tap0, it is passed to the application +(VTun for example). The application encrypts, compresses and sends it to +the other side over TCP or UDP. The application on the other side decompresses +and decrypts the data received and writes the packet to the TAP device, +the kernel handles the packet like it came from real physical device. + +4. What is the difference between TUN driver and TAP driver? +TUN works with IP frames. TAP works with Ethernet frames. + +This means that you have to read/write IP packets when you are using tun and +ethernet frames when using tap. + +5. What is the difference between BPF and TUN/TAP driver? +BPF is an advanced packet filter. It can be attached to existing +network interface. It does not provide a virtual network interface. +A TUN/TAP driver does provide a virtual network interface and it is possible +to attach BPF to this interface. + +6. Does TAP driver support kernel Ethernet bridging? +Yes. Linux and FreeBSD drivers support Ethernet bridging. -- cgit 1.2.3-korg