From 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 Mon Sep 17 00:00:00 2001 From: Yunhong Jiang Date: Tue, 4 Aug 2015 12:17:53 -0700 Subject: Add the rt linux 4.1.3-rt3 as base Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang --- kernel/Documentation/PCI/00-INDEX | 14 + kernel/Documentation/PCI/MSI-HOWTO.txt | 587 ++++++++++++++++++++++ kernel/Documentation/PCI/PCIEBUS-HOWTO.txt | 217 ++++++++ kernel/Documentation/PCI/pci-error-recovery.txt | 431 ++++++++++++++++ kernel/Documentation/PCI/pci-iov-howto.txt | 135 +++++ kernel/Documentation/PCI/pci.txt | 635 ++++++++++++++++++++++++ kernel/Documentation/PCI/pcieaer-howto.txt | 270 ++++++++++ 7 files changed, 2289 insertions(+) create mode 100644 kernel/Documentation/PCI/00-INDEX create mode 100644 kernel/Documentation/PCI/MSI-HOWTO.txt create mode 100644 kernel/Documentation/PCI/PCIEBUS-HOWTO.txt create mode 100644 kernel/Documentation/PCI/pci-error-recovery.txt create mode 100644 kernel/Documentation/PCI/pci-iov-howto.txt create mode 100644 kernel/Documentation/PCI/pci.txt create mode 100644 kernel/Documentation/PCI/pcieaer-howto.txt (limited to 'kernel/Documentation/PCI') diff --git a/kernel/Documentation/PCI/00-INDEX b/kernel/Documentation/PCI/00-INDEX new file mode 100644 index 000000000..147231f16 --- /dev/null +++ b/kernel/Documentation/PCI/00-INDEX @@ -0,0 +1,14 @@ +00-INDEX + - this file +MSI-HOWTO.txt + - the Message Signaled Interrupts (MSI) Driver Guide HOWTO and FAQ. +PCIEBUS-HOWTO.txt + - a guide describing the PCI Express Port Bus driver +pci-error-recovery.txt + - info on PCI error recovery +pci-iov-howto.txt + - the PCI Express I/O Virtualization HOWTO +pci.txt + - info on the PCI subsystem for device driver authors +pcieaer-howto.txt + - the PCI Express Advanced Error Reporting Driver Guide HOWTO diff --git a/kernel/Documentation/PCI/MSI-HOWTO.txt b/kernel/Documentation/PCI/MSI-HOWTO.txt new file mode 100644 index 000000000..1179850f4 --- /dev/null +++ b/kernel/Documentation/PCI/MSI-HOWTO.txt @@ -0,0 +1,587 @@ + The MSI Driver Guide HOWTO + Tom L Nguyen tom.l.nguyen@intel.com + 10/03/2003 + Revised Feb 12, 2004 by Martine Silbermann + email: Martine.Silbermann@hp.com + Revised Jun 25, 2004 by Tom L Nguyen + Revised Jul 9, 2008 by Matthew Wilcox + Copyright 2003, 2008 Intel Corporation + +1. About this guide + +This guide describes the basics of Message Signaled Interrupts (MSIs), +the advantages of using MSI over traditional interrupt mechanisms, how +to change your driver to use MSI or MSI-X and some basic diagnostics to +try if a device doesn't support MSIs. + + +2. What are MSIs? + +A Message Signaled Interrupt is a write from the device to a special +address which causes an interrupt to be received by the CPU. + +The MSI capability was first specified in PCI 2.2 and was later enhanced +in PCI 3.0 to allow each interrupt to be masked individually. The MSI-X +capability was also introduced with PCI 3.0. It supports more interrupts +per device than MSI and allows interrupts to be independently configured. + +Devices may support both MSI and MSI-X, but only one can be enabled at +a time. + + +3. Why use MSIs? + +There are three reasons why using MSIs can give an advantage over +traditional pin-based interrupts. + +Pin-based PCI interrupts are often shared amongst several devices. +To support this, the kernel must call each interrupt handler associated +with an interrupt, which leads to reduced performance for the system as +a whole. MSIs are never shared, so this problem cannot arise. + +When a device writes data to memory, then raises a pin-based interrupt, +it is possible that the interrupt may arrive before all the data has +arrived in memory (this becomes more likely with devices behind PCI-PCI +bridges). In order to ensure that all the data has arrived in memory, +the interrupt handler must read a register on the device which raised +the interrupt. PCI transaction ordering rules require that all the data +arrive in memory before the value may be returned from the register. +Using MSIs avoids this problem as the interrupt-generating write cannot +pass the data writes, so by the time the interrupt is raised, the driver +knows that all the data has arrived in memory. + +PCI devices can only support a single pin-based interrupt per function. +Often drivers have to query the device to find out what event has +occurred, slowing down interrupt handling for the common case. With +MSIs, a device can support more interrupts, allowing each interrupt +to be specialised to a different purpose. One possible design gives +infrequent conditions (such as errors) their own interrupt which allows +the driver to handle the normal interrupt handling path more efficiently. +Other possible designs include giving one interrupt to each packet queue +in a network card or each port in a storage controller. + + +4. How to use MSIs + +PCI devices are initialised to use pin-based interrupts. The device +driver has to set up the device to use MSI or MSI-X. Not all machines +support MSIs correctly, and for those machines, the APIs described below +will simply fail and the device will continue to use pin-based interrupts. + +4.1 Include kernel support for MSIs + +To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI +option enabled. This option is only available on some architectures, +and it may depend on some other options also being set. For example, +on x86, you must also enable X86_UP_APIC or SMP in order to see the +CONFIG_PCI_MSI option. + +4.2 Using MSI + +Most of the hard work is done for the driver in the PCI layer. It simply +has to request that the PCI layer set up the MSI capability for this +device. + +4.2.1 pci_enable_msi + +int pci_enable_msi(struct pci_dev *dev) + +A successful call allocates ONE interrupt to the device, regardless +of how many MSIs the device supports. The device is switched from +pin-based interrupt mode to MSI mode. The dev->irq number is changed +to a new number which represents the message signaled interrupt; +consequently, this function should be called before the driver calls +request_irq(), because an MSI is delivered via a vector that is +different from the vector of a pin-based interrupt. + +4.2.2 pci_enable_msi_range + +int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec) + +This function allows a device driver to request any number of MSI +interrupts within specified range from 'minvec' to 'maxvec'. + +If this function returns a positive number it indicates the number of +MSI interrupts that have been successfully allocated. In this case +the device is switched from pin-based interrupt mode to MSI mode and +updates dev->irq to be the lowest of the new interrupts assigned to it. +The other interrupts assigned to the device are in the range dev->irq +to dev->irq + returned value - 1. Device driver can use the returned +number of successfully allocated MSI interrupts to further allocate +and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +This function should be called before the driver calls request_irq(), +because MSI interrupts are delivered via vectors that are different +from the vector of a pin-based interrupt. + +It is ideal if drivers can cope with a variable number of MSI interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI +interrupts within a range. See chapter 4.3.1.3 to get the idea how to +handle such devices for MSI-X - the same logic applies to MSI. + +4.2.1.1 Maximum possible number of MSI interrupts + +The typical usage of MSI interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msi_vec_count() function: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.2.1.2 Exact number of MSI interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec) +{ + return pci_enable_msi_range(pdev, nvec, nvec); +} + +Note, unlike pci_enable_msi_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msi_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msi_exact() does). + +4.2.1.3 Single MSI mode + +The most notorious example of the request type described above is +enabling the single MSI mode for a device. It could be done by passing +two 1s as 'minvec' and 'maxvec': + +static int foo_driver_enable_single_msi(struct pci_dev *pdev) +{ + return pci_enable_msi_range(pdev, 1, 1); +} + +Note, unlike pci_enable_msi() function, which could be also used to +enable the single MSI mode, pci_enable_msi_range() returns either a +negative errno or 1 (not negative errno or 0 - as pci_enable_msi() +does). + +4.2.3 pci_enable_msi_exact + +int pci_enable_msi_exact(struct pci_dev *dev, int nvec) + +This variation on pci_enable_msi_range() call allows a device driver to +request exactly 'nvec' MSIs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to request any more MSI interrupts for +this device. + +By contrast with pci_enable_msi_range() function, pci_enable_msi_exact() +returns zero in case of success, which indicates MSI interrupts have been +successfully allocated. + +4.2.4 pci_disable_msi + +void pci_disable_msi(struct pci_dev *dev) + +This function should be used to undo the effect of pci_enable_msi_range(). +Calling it restores dev->irq to the pin-based interrupt number and frees +the previously allocated MSIs. The interrupts may subsequently be assigned +to another device, so drivers should not cache the value of dev->irq. + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI enabled and thus leaking its vector. + +4.2.4 pci_msi_vec_count + +int pci_msi_vec_count(struct pci_dev *dev) + +This function could be used to retrieve the number of MSI vectors the +device requested (via the Multiple Message Capable register). The MSI +specification only allows the returned value to be a power of two, +up to a maximum of 2^5 (32). + +If this function returns a negative number, it indicates the device is +not capable of sending MSIs. + +If this function returns a positive number, it indicates the maximum +number of MSI interrupt vectors that could be allocated. + +4.3 Using MSI-X + +The MSI-X capability is much more flexible than the MSI capability. +It supports up to 2048 interrupts, each of which can be controlled +independently. To support this flexibility, drivers must use an array of +`struct msix_entry': + +struct msix_entry { + u16 vector; /* kernel uses to write alloc vector */ + u16 entry; /* driver uses to specify entry */ +}; + +This allows for the device to use these interrupts in a sparse fashion; +for example, it could use interrupts 3 and 1027 and yet allocate only a +two-element array. The driver is expected to fill in the 'entry' value +in each element of the array to indicate for which entries the kernel +should assign interrupts; it is invalid to fill in two entries with the +same number. + +4.3.1 pci_enable_msix_range + +int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, + int minvec, int maxvec) + +Calling this function asks the PCI subsystem to allocate any number of +MSI-X interrupts within specified range from 'minvec' to 'maxvec'. +The 'entries' argument is a pointer to an array of msix_entry structs +which should be at least 'maxvec' entries in size. + +On success, the device is switched into MSI-X mode and the function +returns the number of MSI-X interrupts that have been successfully +allocated. In this case the 'vector' member in entries numbered from +0 to the returned value - 1 is populated with the interrupt number; +the driver should then call request_irq() for each 'vector' that it +decides to use. The device driver is responsible for keeping track of the +interrupts assigned to the MSI-X vectors so it can free them again later. +Device driver can use the returned number of successfully allocated MSI-X +interrupts to further allocate and initialize device resources. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +This function, in contrast with pci_enable_msi_range(), does not adjust +dev->irq. The device will not generate interrupts for this interrupt +number once MSI-X is enabled. + +Device drivers should normally call this function once per device +during the initialization phase. + +It is ideal if drivers can cope with a variable number of MSI-X interrupts; +there are many reasons why the platform may not be able to provide the +exact number that a driver asks for. + +There could be devices that can not operate with just any number of MSI-X +interrupts within a range. E.g., an network adapter might need let's say +four vectors per each queue it provides. Therefore, a number of MSI-X +interrupts allocated should be a multiple of four. In this case interface +pci_enable_msix_range() can not be used alone to request MSI-X interrupts +(since it can allocate any number within the range, without any notion of +the multiple of four) and the device driver should master a custom logic +to request the required number of MSI-X interrupts. + +4.3.1.1 Maximum possible number of MSI-X interrupts + +The typical usage of MSI-X interrupts is to allocate as many vectors as +possible, likely up to the limit returned by pci_msix_vec_count() function: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + 1, nvec); +} + +Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive, +the value of 0 would be meaningless and could result in error. + +Some devices have a minimal limit on number of MSI-X interrupts. +In this case the function could look like this: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + FOO_DRIVER_MINIMUM_NVEC, nvec); +} + +4.3.1.2 Exact number of MSI-X interrupts + +If a driver is unable or unwilling to deal with a variable number of MSI-X +interrupts it could request a particular number of interrupts by passing +that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec' +parameters: + +static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec) +{ + return pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + nvec, nvec); +} + +Note, unlike pci_enable_msix_exact() function, which could be also used to +enable a particular number of MSI-X interrupts, pci_enable_msix_range() +returns either a negative errno or 'nvec' (not negative errno or 0 - as +pci_enable_msix_exact() does). + +4.3.1.3 Specific requirements to the number of MSI-X interrupts + +As noted above, there could be devices that can not operate with just any +number of MSI-X interrupts within a range. E.g., let's assume a device that +is only capable sending the number of MSI-X interrupts which is a power of +two. A routine that enables MSI-X mode for such device might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, + maxvec, maxvec); + /* + * -ENOSPC is the only error code allowed to be analyzed + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } + + return rc; +} + +Note how pci_enable_msix_range() return value is analyzed for a fallback - +any error code other than -ENOSPC indicates a fatal error and should not +be retried. + +4.3.2 pci_enable_msix_exact + +int pci_enable_msix_exact(struct pci_dev *dev, + struct msix_entry *entries, int nvec) + +This variation on pci_enable_msix_range() call allows a device driver to +request exactly 'nvec' MSI-Xs. + +If this function returns a negative number, it indicates an error and +the driver should not attempt to allocate any more MSI-X interrupts for +this device. + +By contrast with pci_enable_msix_range() function, pci_enable_msix_exact() +returns zero in case of success, which indicates MSI-X interrupts have been +successfully allocated. + +Another version of a routine that enables MSI-X mode for a device with +specific requirements described in chapter 4.3.1.3 might look like this: + +/* + * Assume 'minvec' and 'maxvec' are non-zero + */ +static int foo_driver_enable_msix(struct foo_adapter *adapter, + int minvec, int maxvec) +{ + int rc; + + minvec = roundup_pow_of_two(minvec); + maxvec = rounddown_pow_of_two(maxvec); + + if (minvec > maxvec) + return -ERANGE; + +retry: + rc = pci_enable_msix_exact(adapter->pdev, + adapter->msix_entries, maxvec); + + /* + * -ENOSPC is the only error code allowed to be analyzed + */ + if (rc == -ENOSPC) { + if (maxvec == 1) + return -ENOSPC; + + maxvec /= 2; + + if (minvec > maxvec) + return -ENOSPC; + + goto retry; + } else if (rc < 0) { + return rc; + } + + return maxvec; +} + +4.3.3 pci_disable_msix + +void pci_disable_msix(struct pci_dev *dev) + +This function should be used to undo the effect of pci_enable_msix_range(). +It frees the previously allocated MSI-X interrupts. The interrupts may +subsequently be assigned to another device, so drivers should not cache +the value of the 'vector' elements over a call to pci_disable_msix(). + +Before calling this function, a device driver must always call free_irq() +on any interrupt for which it previously called request_irq(). +Failure to do so results in a BUG_ON(), leaving the device with +MSI-X enabled and thus leaking its vector. + +4.3.3 The MSI-X Table + +The MSI-X capability specifies a BAR and offset within that BAR for the +MSI-X Table. This address is mapped by the PCI subsystem, and should not +be accessed directly by the device driver. If the driver wishes to +mask or unmask an interrupt, it should call disable_irq() / enable_irq(). + +4.3.4 pci_msix_vec_count + +int pci_msix_vec_count(struct pci_dev *dev) + +This function could be used to retrieve number of entries in the device +MSI-X table. + +If this function returns a negative number, it indicates the device is +not capable of sending MSI-Xs. + +If this function returns a positive number, it indicates the maximum +number of MSI-X interrupt vectors that could be allocated. + +4.4 Handling devices implementing both MSI and MSI-X capabilities + +If a device implements both MSI and MSI-X capabilities, it can +run in either MSI mode or MSI-X mode, but not both simultaneously. +This is a requirement of the PCI spec, and it is enforced by the +PCI layer. Calling pci_enable_msi_range() when MSI-X is already +enabled or pci_enable_msix_range() when MSI is already enabled +results in an error. If a device driver wishes to switch between MSI +and MSI-X at runtime, it must first quiesce the device, then switch +it back to pin-interrupt mode, before calling pci_enable_msi_range() +or pci_enable_msix_range() and resuming operation. This is not expected +to be a common operation but may be useful for debugging or testing +during development. + +4.5 Considerations when using MSIs + +4.5.1 Choosing between MSI-X and MSI + +If your device supports both MSI-X and MSI capabilities, you should use +the MSI-X facilities in preference to the MSI facilities. As mentioned +above, MSI-X supports any number of interrupts between 1 and 2048. +In contrast, MSI is restricted to a maximum of 32 interrupts (and +must be a power of two). In addition, the MSI interrupt vectors must +be allocated consecutively, so the system might not be able to allocate +as many vectors for MSI as it could for MSI-X. On some platforms, MSI +interrupts must all be targeted at the same set of CPUs whereas MSI-X +interrupts can all be targeted at different CPUs. + +4.5.2 Spinlocks + +Most device drivers have a per-device spinlock which is taken in the +interrupt handler. With pin-based interrupts or a single MSI, it is not +necessary to disable interrupts (Linux guarantees the same interrupt will +not be re-entered). If a device uses multiple interrupts, the driver +must disable interrupts while the lock is held. If the device sends +a different interrupt, the driver will deadlock trying to recursively +acquire the spinlock. Such deadlocks can be avoided by using +spin_lock_irqsave() or spin_lock_irq() which disable local interrupts +and acquire the lock (see Documentation/DocBook/kernel-locking). + +4.6 How to tell whether MSI/MSI-X is enabled on a device + +Using 'lspci -v' (as root) may show some devices with "MSI", "Message +Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities +has an 'Enable' flag which is followed with either "+" (enabled) +or "-" (disabled). + + +5. MSI quirks + +Several PCI chipsets or devices are known not to support MSIs. +The PCI stack provides three ways to disable MSIs: + +1. globally +2. on all devices behind a specific bridge +3. on a single device + +5.1. Disabling MSIs globally + +Some host chipsets simply don't support MSIs properly. If we're +lucky, the manufacturer knows this and has indicated it in the ACPI +FADT table. In this case, Linux automatically disables MSIs. +Some boards don't include this information in the table and so we have +to detect them ourselves. The complete list of these is found near the +quirk_disable_all_msi() function in drivers/pci/quirks.c. + +If you have a board which has problems with MSIs, you can pass pci=nomsi +on the kernel command line to disable MSIs on all devices. It would be +in your best interests to report the problem to linux-pci@vger.kernel.org +including a full 'lspci -v' so we can add the quirks to the kernel. + +5.2. Disabling MSIs below a bridge + +Some PCI bridges are not able to route MSIs between busses properly. +In this case, MSIs must be disabled on all devices behind the bridge. + +Some bridges allow you to enable MSIs by changing some bits in their +PCI configuration space (especially the Hypertransport chipsets such +as the nVidia nForce and Serverworks HT2000). As with host chipsets, +Linux mostly knows about them and automatically enables MSIs if it can. +If you have a bridge unknown to Linux, you can enable +MSIs in configuration space using whatever method you know works, then +enable MSIs on that bridge by doing: + + echo 1 > /sys/bus/pci/devices/$bridge/msi_bus + +where $bridge is the PCI address of the bridge you've enabled (eg +0000:00:0e.0). + +To disable MSIs, echo 0 instead of 1. Changing this value should be +done with caution as it could break interrupt handling for all devices +below this bridge. + +Again, please notify linux-pci@vger.kernel.org of any bridges that need +special handling. + +5.3. Disabling MSIs on a single device + +Some devices are known to have faulty MSI implementations. Usually this +is handled in the individual device driver, but occasionally it's necessary +to handle this with a quirk. Some drivers have an option to disable use +of MSI. While this is a convenient workaround for the driver author, +it is not good practice, and should not be emulated. + +5.4. Finding why MSIs are disabled on a device + +From the above three sections, you can see that there are many reasons +why MSIs may not be enabled for a given device. Your first step should +be to examine your dmesg carefully to determine whether MSIs are enabled +for your machine. You should also check your .config to be sure you +have enabled CONFIG_PCI_MSI. + +Then, 'lspci -t' gives the list of bridges above a device. Reading +/sys/bus/pci/devices/*/msi_bus will tell you whether MSIs are enabled (1) +or disabled (0). If 0 is found in any of the msi_bus files belonging +to bridges between the PCI root and the device, MSIs are disabled. + +It is also worth checking the device driver to see whether it supports MSIs. +For example, it may contain calls to pci_enable_msi_range() or +pci_enable_msix_range(). diff --git a/kernel/Documentation/PCI/PCIEBUS-HOWTO.txt b/kernel/Documentation/PCI/PCIEBUS-HOWTO.txt new file mode 100644 index 000000000..6bd5f372a --- /dev/null +++ b/kernel/Documentation/PCI/PCIEBUS-HOWTO.txt @@ -0,0 +1,217 @@ + The PCI Express Port Bus Driver Guide HOWTO + Tom L Nguyen tom.l.nguyen@intel.com + 11/03/2004 + +1. About this guide + +This guide describes the basics of the PCI Express Port Bus driver +and provides information on how to enable the service drivers to +register/unregister with the PCI Express Port Bus Driver. + +2. Copyright 2004 Intel Corporation + +3. What is the PCI Express Port Bus Driver + +A PCI Express Port is a logical PCI-PCI Bridge structure. There +are two types of PCI Express Port: the Root Port and the Switch +Port. The Root Port originates a PCI Express link from a PCI Express +Root Complex and the Switch Port connects PCI Express links to +internal logical PCI buses. The Switch Port, which has its secondary +bus representing the switch's internal routing logic, is called the +switch's Upstream Port. The switch's Downstream Port is bridging from +switch's internal routing bus to a bus representing the downstream +PCI Express link from the PCI Express Switch. + +A PCI Express Port can provide up to four distinct functions, +referred to in this document as services, depending on its port type. +PCI Express Port's services include native hotplug support (HP), +power management event support (PME), advanced error reporting +support (AER), and virtual channel support (VC). These services may +be handled by a single complex driver or be individually distributed +and handled by corresponding service drivers. + +4. Why use the PCI Express Port Bus Driver? + +In existing Linux kernels, the Linux Device Driver Model allows a +physical device to be handled by only a single driver. The PCI +Express Port is a PCI-PCI Bridge device with multiple distinct +services. To maintain a clean and simple solution each service +may have its own software service driver. In this case several +service drivers will compete for a single PCI-PCI Bridge device. +For example, if the PCI Express Root Port native hotplug service +driver is loaded first, it claims a PCI-PCI Bridge Root Port. The +kernel therefore does not load other service drivers for that Root +Port. In other words, it is impossible to have multiple service +drivers load and run on a PCI-PCI Bridge device simultaneously +using the current driver model. + +To enable multiple service drivers running simultaneously requires +having a PCI Express Port Bus driver, which manages all populated +PCI Express Ports and distributes all provided service requests +to the corresponding service drivers as required. Some key +advantages of using the PCI Express Port Bus driver are listed below: + + - Allow multiple service drivers to run simultaneously on + a PCI-PCI Bridge Port device. + + - Allow service drivers implemented in an independent + staged approach. + + - Allow one service driver to run on multiple PCI-PCI Bridge + Port devices. + + - Manage and distribute resources of a PCI-PCI Bridge Port + device to requested service drivers. + +5. Configuring the PCI Express Port Bus Driver vs. Service Drivers + +5.1 Including the PCI Express Port Bus Driver Support into the Kernel + +Including the PCI Express Port Bus driver depends on whether the PCI +Express support is included in the kernel config. The kernel will +automatically include the PCI Express Port Bus driver as a kernel +driver when the PCI Express support is enabled in the kernel. + +5.2 Enabling Service Driver Support + +PCI device drivers are implemented based on Linux Device Driver Model. +All service drivers are PCI device drivers. As discussed above, it is +impossible to load any service driver once the kernel has loaded the +PCI Express Port Bus Driver. To meet the PCI Express Port Bus Driver +Model requires some minimal changes on existing service drivers that +imposes no impact on the functionality of existing service drivers. + +A service driver is required to use the two APIs shown below to +register its service with the PCI Express Port Bus driver (see +section 5.2.1 & 5.2.2). It is important that a service driver +initializes the pcie_port_service_driver data structure, included in +header file /include/linux/pcieport_if.h, before calling these APIs. +Failure to do so will result an identity mismatch, which prevents +the PCI Express Port Bus driver from loading a service driver. + +5.2.1 pcie_port_service_register + +int pcie_port_service_register(struct pcie_port_service_driver *new) + +This API replaces the Linux Driver Model's pci_register_driver API. A +service driver should always calls pcie_port_service_register at +module init. Note that after service driver being loaded, calls +such as pci_enable_device(dev) and pci_set_master(dev) are no longer +necessary since these calls are executed by the PCI Port Bus driver. + +5.2.2 pcie_port_service_unregister + +void pcie_port_service_unregister(struct pcie_port_service_driver *new) + +pcie_port_service_unregister replaces the Linux Driver Model's +pci_unregister_driver. It's always called by service driver when a +module exits. + +5.2.3 Sample Code + +Below is sample service driver code to initialize the port service +driver data structure. + +static struct pcie_port_service_id service_id[] = { { + .vendor = PCI_ANY_ID, + .device = PCI_ANY_ID, + .port_type = PCIE_RC_PORT, + .service_type = PCIE_PORT_SERVICE_AER, + }, { /* end: all zeroes */ } +}; + +static struct pcie_port_service_driver root_aerdrv = { + .name = (char *)device_name, + .id_table = &service_id[0], + + .probe = aerdrv_load, + .remove = aerdrv_unload, + + .suspend = aerdrv_suspend, + .resume = aerdrv_resume, +}; + +Below is a sample code for registering/unregistering a service +driver. + +static int __init aerdrv_service_init(void) +{ + int retval = 0; + + retval = pcie_port_service_register(&root_aerdrv); + if (!retval) { + /* + * FIX ME + */ + } + return retval; +} + +static void __exit aerdrv_service_exit(void) +{ + pcie_port_service_unregister(&root_aerdrv); +} + +module_init(aerdrv_service_init); +module_exit(aerdrv_service_exit); + +6. Possible Resource Conflicts + +Since all service drivers of a PCI-PCI Bridge Port device are +allowed to run simultaneously, below lists a few of possible resource +conflicts with proposed solutions. + +6.1 MSI Vector Resource + +The MSI capability structure enables a device software driver to call +pci_enable_msi to request MSI based interrupts. Once MSI interrupts +are enabled on a device, it stays in this mode until a device driver +calls pci_disable_msi to disable MSI interrupts and revert back to +INTx emulation mode. Since service drivers of the same PCI-PCI Bridge +port share the same physical device, if an individual service driver +calls pci_enable_msi/pci_disable_msi it may result unpredictable +behavior. For example, two service drivers run simultaneously on the +same physical Root Port. Both service drivers call pci_enable_msi to +request MSI based interrupts. A service driver may not know whether +any other service drivers have run on this Root Port. If either one +of them calls pci_disable_msi, it puts the other service driver +in a wrong interrupt mode. + +To avoid this situation all service drivers are not permitted to +switch interrupt mode on its device. The PCI Express Port Bus driver +is responsible for determining the interrupt mode and this should be +transparent to service drivers. Service drivers need to know only +the vector IRQ assigned to the field irq of struct pcie_device, which +is passed in when the PCI Express Port Bus driver probes each service +driver. Service drivers should use (struct pcie_device*)dev->irq to +call request_irq/free_irq. In addition, the interrupt mode is stored +in the field interrupt_mode of struct pcie_device. + +6.2 MSI-X Vector Resources + +Similar to the MSI a device driver for an MSI-X capable device can +call pci_enable_msix to request MSI-X interrupts. All service drivers +are not permitted to switch interrupt mode on its device. The PCI +Express Port Bus driver is responsible for determining the interrupt +mode and this should be transparent to service drivers. Any attempt +by service driver to call pci_enable_msix/pci_disable_msix may +result unpredictable behavior. Service drivers should use +(struct pcie_device*)dev->irq and call request_irq/free_irq. + +6.3 PCI Memory/IO Mapped Regions + +Service drivers for PCI Express Power Management (PME), Advanced +Error Reporting (AER), Hot-Plug (HP) and Virtual Channel (VC) access +PCI configuration space on the PCI Express port. In all cases the +registers accessed are independent of each other. This patch assumes +that all service drivers will be well behaved and not overwrite +other service driver's configuration settings. + +6.4 PCI Config Registers + +Each service driver runs its PCI config operations on its own +capability structure except the PCI Express capability structure, in +which Root Control register and Device Control register are shared +between PME and AER. This patch assumes that all service drivers +will be well behaved and not overwrite other service driver's +configuration settings. diff --git a/kernel/Documentation/PCI/pci-error-recovery.txt b/kernel/Documentation/PCI/pci-error-recovery.txt new file mode 100644 index 000000000..ac26869c7 --- /dev/null +++ b/kernel/Documentation/PCI/pci-error-recovery.txt @@ -0,0 +1,431 @@ + + PCI Error Recovery + ------------------ + February 2, 2006 + + Current document maintainer: + Linas Vepstas + updated by Richard Lary + and Mike Mason on 27-Jul-2009 + + +Many PCI bus controllers are able to detect a variety of hardware +PCI errors on the bus, such as parity errors on the data and address +busses, as well as SERR and PERR errors. Some of the more advanced +chipsets are able to deal with these errors; these include PCI-E chipsets, +and the PCI-host bridges found on IBM Power4, Power5 and Power6-based +pSeries boxes. A typical action taken is to disconnect the affected device, +halting all I/O to it. The goal of a disconnection is to avoid system +corruption; for example, to halt system memory corruption due to DMA's +to "wild" addresses. Typically, a reconnection mechanism is also +offered, so that the affected PCI device(s) are reset and put back +into working condition. The reset phase requires coordination +between the affected device drivers and the PCI controller chip. +This document describes a generic API for notifying device drivers +of a bus disconnection, and then performing error recovery. +This API is currently implemented in the 2.6.16 and later kernels. + +Reporting and recovery is performed in several steps. First, when +a PCI hardware error has resulted in a bus disconnect, that event +is reported as soon as possible to all affected device drivers, +including multiple instances of a device driver on multi-function +cards. This allows device drivers to avoid deadlocking in spinloops, +waiting for some i/o-space register to change, when it never will. +It also gives the drivers a chance to defer incoming I/O as +needed. + +Next, recovery is performed in several stages. Most of the complexity +is forced by the need to handle multi-function devices, that is, +devices that have multiple device drivers associated with them. +In the first stage, each driver is allowed to indicate what type +of reset it desires, the choices being a simple re-enabling of I/O +or requesting a slot reset. + +If any driver requests a slot reset, that is what will be done. + +After a reset and/or a re-enabling of I/O, all drivers are +again notified, so that they may then perform any device setup/config +that may be required. After these have all completed, a final +"resume normal operations" event is sent out. + +The biggest reason for choosing a kernel-based implementation rather +than a user-space implementation was the need to deal with bus +disconnects of PCI devices attached to storage media, and, in particular, +disconnects from devices holding the root file system. If the root +file system is disconnected, a user-space mechanism would have to go +through a large number of contortions to complete recovery. Almost all +of the current Linux file systems are not tolerant of disconnection +from/reconnection to their underlying block device. By contrast, +bus errors are easy to manage in the device driver. Indeed, most +device drivers already handle very similar recovery procedures; +for example, the SCSI-generic layer already provides significant +mechanisms for dealing with SCSI bus errors and SCSI bus resets. + + +Detailed Design +--------------- +Design and implementation details below, based on a chain of +public email discussions with Ben Herrenschmidt, circa 5 April 2005. + +The error recovery API support is exposed to the driver in the form of +a structure of function pointers pointed to by a new field in struct +pci_driver. A driver that fails to provide the structure is "non-aware", +and the actual recovery steps taken are platform dependent. The +arch/powerpc implementation will simulate a PCI hotplug remove/add. + +This structure has the form: +struct pci_error_handlers +{ + int (*error_detected)(struct pci_dev *dev, enum pci_channel_state); + int (*mmio_enabled)(struct pci_dev *dev); + int (*link_reset)(struct pci_dev *dev); + int (*slot_reset)(struct pci_dev *dev); + void (*resume)(struct pci_dev *dev); +}; + +The possible channel states are: +enum pci_channel_state { + pci_channel_io_normal, /* I/O channel is in normal state */ + pci_channel_io_frozen, /* I/O to channel is blocked */ + pci_channel_io_perm_failure, /* PCI card is dead */ +}; + +Possible return values are: +enum pci_ers_result { + PCI_ERS_RESULT_NONE, /* no result/none/not supported in device driver */ + PCI_ERS_RESULT_CAN_RECOVER, /* Device driver can recover without slot reset */ + PCI_ERS_RESULT_NEED_RESET, /* Device driver wants slot to be reset. */ + PCI_ERS_RESULT_DISCONNECT, /* Device has completely failed, is unrecoverable */ + PCI_ERS_RESULT_RECOVERED, /* Device driver is fully recovered and operational */ +}; + +A driver does not have to implement all of these callbacks; however, +if it implements any, it must implement error_detected(). If a callback +is not implemented, the corresponding feature is considered unsupported. +For example, if mmio_enabled() and resume() aren't there, then it +is assumed that the driver is not doing any direct recovery and requires +a slot reset. If link_reset() is not implemented, the card is assumed to +not care about link resets. Typically a driver will want to know about +a slot_reset(). + +The actual steps taken by a platform to recover from a PCI error +event will be platform-dependent, but will follow the general +sequence described below. + +STEP 0: Error Event +------------------- +A PCI bus error is detected by the PCI hardware. On powerpc, the slot +is isolated, in that all I/O is blocked: all reads return 0xffffffff, +all writes are ignored. + + +STEP 1: Notification +-------------------- +Platform calls the error_detected() callback on every instance of +every driver affected by the error. + +At this point, the device might not be accessible anymore, depending on +the platform (the slot will be isolated on powerpc). The driver may +already have "noticed" the error because of a failing I/O, but this +is the proper "synchronization point", that is, it gives the driver +a chance to cleanup, waiting for pending stuff (timers, whatever, etc...) +to complete; it can take semaphores, schedule, etc... everything but +touch the device. Within this function and after it returns, the driver +shouldn't do any new IOs. Called in task context. This is sort of a +"quiesce" point. See note about interrupts at the end of this doc. + +All drivers participating in this system must implement this call. +The driver must return one of the following result codes: + - PCI_ERS_RESULT_CAN_RECOVER: + Driver returns this if it thinks it might be able to recover + the HW by just banging IOs or if it wants to be given + a chance to extract some diagnostic information (see + mmio_enable, below). + - PCI_ERS_RESULT_NEED_RESET: + Driver returns this if it can't recover without a + slot reset. + - PCI_ERS_RESULT_DISCONNECT: + Driver returns this if it doesn't want to recover at all. + +The next step taken will depend on the result codes returned by the +drivers. + +If all drivers on the segment/slot return PCI_ERS_RESULT_CAN_RECOVER, +then the platform should re-enable IOs on the slot (or do nothing in +particular, if the platform doesn't isolate slots), and recovery +proceeds to STEP 2 (MMIO Enable). + +If any driver requested a slot reset (by returning PCI_ERS_RESULT_NEED_RESET), +then recovery proceeds to STEP 4 (Slot Reset). + +If the platform is unable to recover the slot, the next step +is STEP 6 (Permanent Failure). + +>>> The current powerpc implementation assumes that a device driver will +>>> *not* schedule or semaphore in this routine; the current powerpc +>>> implementation uses one kernel thread to notify all devices; +>>> thus, if one device sleeps/schedules, all devices are affected. +>>> Doing better requires complex multi-threaded logic in the error +>>> recovery implementation (e.g. waiting for all notification threads +>>> to "join" before proceeding with recovery.) This seems excessively +>>> complex and not worth implementing. + +>>> The current powerpc implementation doesn't much care if the device +>>> attempts I/O at this point, or not. I/O's will fail, returning +>>> a value of 0xff on read, and writes will be dropped. If more than +>>> EEH_MAX_FAILS I/O's are attempted to a frozen adapter, EEH +>>> assumes that the device driver has gone into an infinite loop +>>> and prints an error to syslog. A reboot is then required to +>>> get the device working again. + +STEP 2: MMIO Enabled +------------------- +The platform re-enables MMIO to the device (but typically not the +DMA), and then calls the mmio_enabled() callback on all affected +device drivers. + +This is the "early recovery" call. IOs are allowed again, but DMA is +not, with some restrictions. This is NOT a callback for the driver to +start operations again, only to peek/poke at the device, extract diagnostic +information, if any, and eventually do things like trigger a device local +reset or some such, but not restart operations. This callback is made if +all drivers on a segment agree that they can try to recover and if no automatic +link reset was performed by the HW. If the platform can't just re-enable IOs +without a slot reset or a link reset, it will not call this callback, and +instead will have gone directly to STEP 3 (Link Reset) or STEP 4 (Slot Reset) + +>>> The following is proposed; no platform implements this yet: +>>> Proposal: All I/O's should be done _synchronously_ from within +>>> this callback, errors triggered by them will be returned via +>>> the normal pci_check_whatever() API, no new error_detected() +>>> callback will be issued due to an error happening here. However, +>>> such an error might cause IOs to be re-blocked for the whole +>>> segment, and thus invalidate the recovery that other devices +>>> on the same segment might have done, forcing the whole segment +>>> into one of the next states, that is, link reset or slot reset. + +The driver should return one of the following result codes: + - PCI_ERS_RESULT_RECOVERED + Driver returns this if it thinks the device is fully + functional and thinks it is ready to start + normal driver operations again. There is no + guarantee that the driver will actually be + allowed to proceed, as another driver on the + same segment might have failed and thus triggered a + slot reset on platforms that support it. + + - PCI_ERS_RESULT_NEED_RESET + Driver returns this if it thinks the device is not + recoverable in its current state and it needs a slot + reset to proceed. + + - PCI_ERS_RESULT_DISCONNECT + Same as above. Total failure, no recovery even after + reset driver dead. (To be defined more precisely) + +The next step taken depends on the results returned by the drivers. +If all drivers returned PCI_ERS_RESULT_RECOVERED, then the platform +proceeds to either STEP3 (Link Reset) or to STEP 5 (Resume Operations). + +If any driver returned PCI_ERS_RESULT_NEED_RESET, then the platform +proceeds to STEP 4 (Slot Reset) + +STEP 3: Link Reset +------------------ +The platform resets the link, and then calls the link_reset() callback +on all affected device drivers. This is a PCI-Express specific state +and is done whenever a non-fatal error has been detected that can be +"solved" by resetting the link. This call informs the driver of the +reset and the driver should check to see if the device appears to be +in working condition. + +The driver is not supposed to restart normal driver I/O operations +at this point. It should limit itself to "probing" the device to +check its recoverability status. If all is right, then the platform +will call resume() once all drivers have ack'd link_reset(). + + Result codes: + (identical to STEP 3 (MMIO Enabled) + +The platform then proceeds to either STEP 4 (Slot Reset) or STEP 5 +(Resume Operations). + +>>> The current powerpc implementation does not implement this callback. + +STEP 4: Slot Reset +------------------ + +In response to a return value of PCI_ERS_RESULT_NEED_RESET, the +the platform will perform a slot reset on the requesting PCI device(s). +The actual steps taken by a platform to perform a slot reset +will be platform-dependent. Upon completion of slot reset, the +platform will call the device slot_reset() callback. + +Powerpc platforms implement two levels of slot reset: +soft reset(default) and fundamental(optional) reset. + +Powerpc soft reset consists of asserting the adapter #RST line and then +restoring the PCI BAR's and PCI configuration header to a state +that is equivalent to what it would be after a fresh system +power-on followed by power-on BIOS/system firmware initialization. +Soft reset is also known as hot-reset. + +Powerpc fundamental reset is supported by PCI Express cards only +and results in device's state machines, hardware logic, port states and +configuration registers to initialize to their default conditions. + +For most PCI devices, a soft reset will be sufficient for recovery. +Optional fundamental reset is provided to support a limited number +of PCI Express PCI devices for which a soft reset is not sufficient +for recovery. + +If the platform supports PCI hotplug, then the reset might be +performed by toggling the slot electrical power off/on. + +It is important for the platform to restore the PCI config space +to the "fresh poweron" state, rather than the "last state". After +a slot reset, the device driver will almost always use its standard +device initialization routines, and an unusual config space setup +may result in hung devices, kernel panics, or silent data corruption. + +This call gives drivers the chance to re-initialize the hardware +(re-download firmware, etc.). At this point, the driver may assume +that the card is in a fresh state and is fully functional. The slot +is unfrozen and the driver has full access to PCI config space, +memory mapped I/O space and DMA. Interrupts (Legacy, MSI, or MSI-X) +will also be available. + +Drivers should not restart normal I/O processing operations +at this point. If all device drivers report success on this +callback, the platform will call resume() to complete the sequence, +and let the driver restart normal I/O processing. + +A driver can still return a critical failure for this function if +it can't get the device operational after reset. If the platform +previously tried a soft reset, it might now try a hard reset (power +cycle) and then call slot_reset() again. It the device still can't +be recovered, there is nothing more that can be done; the platform +will typically report a "permanent failure" in such a case. The +device will be considered "dead" in this case. + +Drivers for multi-function cards will need to coordinate among +themselves as to which driver instance will perform any "one-shot" +or global device initialization. For example, the Symbios sym53cxx2 +driver performs device init only from PCI function 0: + ++ if (PCI_FUNC(pdev->devfn) == 0) ++ sym_reset_scsi_bus(np, 0); + + Result codes: + - PCI_ERS_RESULT_DISCONNECT + Same as above. + +Drivers for PCI Express cards that require a fundamental reset must +set the needs_freset bit in the pci_dev structure in their probe function. +For example, the QLogic qla2xxx driver sets the needs_freset bit for certain +PCI card types: + ++ /* Set EEH reset type to fundamental if required by hba */ ++ if (IS_QLA24XX(ha) || IS_QLA25XX(ha) || IS_QLA81XX(ha)) ++ pdev->needs_freset = 1; ++ + +Platform proceeds either to STEP 5 (Resume Operations) or STEP 6 (Permanent +Failure). + +>>> The current powerpc implementation does not try a power-cycle +>>> reset if the driver returned PCI_ERS_RESULT_DISCONNECT. +>>> However, it probably should. + + +STEP 5: Resume Operations +------------------------- +The platform will call the resume() callback on all affected device +drivers if all drivers on the segment have returned +PCI_ERS_RESULT_RECOVERED from one of the 3 previous callbacks. +The goal of this callback is to tell the driver to restart activity, +that everything is back and running. This callback does not return +a result code. + +At this point, if a new error happens, the platform will restart +a new error recovery sequence. + +STEP 6: Permanent Failure +------------------------- +A "permanent failure" has occurred, and the platform cannot recover +the device. The platform will call error_detected() with a +pci_channel_state value of pci_channel_io_perm_failure. + +The device driver should, at this point, assume the worst. It should +cancel all pending I/O, refuse all new I/O, returning -EIO to +higher layers. The device driver should then clean up all of its +memory and remove itself from kernel operations, much as it would +during system shutdown. + +The platform will typically notify the system operator of the +permanent failure in some way. If the device is hotplug-capable, +the operator will probably want to remove and replace the device. +Note, however, not all failures are truly "permanent". Some are +caused by over-heating, some by a poorly seated card. Many +PCI error events are caused by software bugs, e.g. DMA's to +wild addresses or bogus split transactions due to programming +errors. See the discussion in powerpc/eeh-pci-error-recovery.txt +for additional detail on real-life experience of the causes of +software errors. + + +Conclusion; General Remarks +--------------------------- +The way the callbacks are called is platform policy. A platform with +no slot reset capability may want to just "ignore" drivers that can't +recover (disconnect them) and try to let other cards on the same segment +recover. Keep in mind that in most real life cases, though, there will +be only one driver per segment. + +Now, a note about interrupts. If you get an interrupt and your +device is dead or has been isolated, there is a problem :) +The current policy is to turn this into a platform policy. +That is, the recovery API only requires that: + + - There is no guarantee that interrupt delivery can proceed from any +device on the segment starting from the error detection and until the +slot_reset callback is called, at which point interrupts are expected +to be fully operational. + + - There is no guarantee that interrupt delivery is stopped, that is, +a driver that gets an interrupt after detecting an error, or that detects +an error within the interrupt handler such that it prevents proper +ack'ing of the interrupt (and thus removal of the source) should just +return IRQ_NOTHANDLED. It's up to the platform to deal with that +condition, typically by masking the IRQ source during the duration of +the error handling. It is expected that the platform "knows" which +interrupts are routed to error-management capable slots and can deal +with temporarily disabling that IRQ number during error processing (this +isn't terribly complex). That means some IRQ latency for other devices +sharing the interrupt, but there is simply no other way. High end +platforms aren't supposed to share interrupts between many devices +anyway :) + +>>> Implementation details for the powerpc platform are discussed in +>>> the file Documentation/powerpc/eeh-pci-error-recovery.txt + +>>> As of this writing, there is a growing list of device drivers with +>>> patches implementing error recovery. Not all of these patches are in +>>> mainline yet. These may be used as "examples": +>>> +>>> drivers/scsi/ipr +>>> drivers/scsi/sym53c8xx_2 +>>> drivers/scsi/qla2xxx +>>> drivers/scsi/lpfc +>>> drivers/next/bnx2.c +>>> drivers/next/e100.c +>>> drivers/net/e1000 +>>> drivers/net/e1000e +>>> drivers/net/ixgb +>>> drivers/net/ixgbe +>>> drivers/net/cxgb3 +>>> drivers/net/s2io.c +>>> drivers/net/qlge + +The End +------- diff --git a/kernel/Documentation/PCI/pci-iov-howto.txt b/kernel/Documentation/PCI/pci-iov-howto.txt new file mode 100644 index 000000000..2d91ae251 --- /dev/null +++ b/kernel/Documentation/PCI/pci-iov-howto.txt @@ -0,0 +1,135 @@ + PCI Express I/O Virtualization Howto + Copyright (C) 2009 Intel Corporation + Yu Zhao + + Update: November 2012 + -- sysfs-based SRIOV enable-/disable-ment + Donald Dutile + +1. Overview + +1.1 What is SR-IOV + +Single Root I/O Virtualization (SR-IOV) is a PCI Express Extended +capability which makes one physical device appear as multiple virtual +devices. The physical device is referred to as Physical Function (PF) +while the virtual devices are referred to as Virtual Functions (VF). +Allocation of the VF can be dynamically controlled by the PF via +registers encapsulated in the capability. By default, this feature is +not enabled and the PF behaves as traditional PCIe device. Once it's +turned on, each VF's PCI configuration space can be accessed by its own +Bus, Device and Function Number (Routing ID). And each VF also has PCI +Memory Space, which is used to map its register set. VF device driver +operates on the register set so it can be functional and appear as a +real existing PCI device. + +2. User Guide + +2.1 How can I enable SR-IOV capability + +Multiple methods are available for SR-IOV enablement. +In the first method, the device driver (PF driver) will control the +enabling and disabling of the capability via API provided by SR-IOV core. +If the hardware has SR-IOV capability, loading its PF driver would +enable it and all VFs associated with the PF. Some PF drivers require +a module parameter to be set to determine the number of VFs to enable. +In the second method, a write to the sysfs file sriov_numvfs will +enable and disable the VFs associated with a PCIe PF. This method +enables per-PF, VF enable/disable values versus the first method, +which applies to all PFs of the same device. Additionally, the +PCI SRIOV core support ensures that enable/disable operations are +valid to reduce duplication in multiple drivers for the same +checks, e.g., check numvfs == 0 if enabling VFs, ensure +numvfs <= totalvfs. +The second method is the recommended method for new/future VF devices. + +2.2 How can I use the Virtual Functions + +The VF is treated as hot-plugged PCI devices in the kernel, so they +should be able to work in the same way as real PCI devices. The VF +requires device driver that is same as a normal PCI device's. + +3. Developer Guide + +3.1 SR-IOV API + +To enable SR-IOV capability: +(a) For the first method, in the driver: + int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn); + 'nr_virtfn' is number of VFs to be enabled. +(b) For the second method, from sysfs: + echo 'nr_virtfn' > \ + /sys/bus/pci/devices//sriov_numvfs + +To disable SR-IOV capability: +(a) For the first method, in the driver: + void pci_disable_sriov(struct pci_dev *dev); +(b) For the second method, from sysfs: + echo 0 > \ + /sys/bus/pci/devices//sriov_numvfs + +3.2 Usage example + +Following piece of code illustrates the usage of the SR-IOV API. + +static int dev_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + pci_enable_sriov(dev, NR_VIRTFN); + + ... + + return 0; +} + +static void dev_remove(struct pci_dev *dev) +{ + pci_disable_sriov(dev); + + ... +} + +static int dev_suspend(struct pci_dev *dev, pm_message_t state) +{ + ... + + return 0; +} + +static int dev_resume(struct pci_dev *dev) +{ + ... + + return 0; +} + +static void dev_shutdown(struct pci_dev *dev) +{ + ... +} + +static int dev_sriov_configure(struct pci_dev *dev, int numvfs) +{ + if (numvfs > 0) { + ... + pci_enable_sriov(dev, numvfs); + ... + return numvfs; + } + if (numvfs == 0) { + .... + pci_disable_sriov(dev); + ... + return 0; + } +} + +static struct pci_driver dev_driver = { + .name = "SR-IOV Physical Function driver", + .id_table = dev_id_table, + .probe = dev_probe, + .remove = dev_remove, + .suspend = dev_suspend, + .resume = dev_resume, + .shutdown = dev_shutdown, + .sriov_configure = dev_sriov_configure, +}; diff --git a/kernel/Documentation/PCI/pci.txt b/kernel/Documentation/PCI/pci.txt new file mode 100644 index 000000000..123881f62 --- /dev/null +++ b/kernel/Documentation/PCI/pci.txt @@ -0,0 +1,635 @@ + + How To Write Linux PCI Drivers + + by Martin Mares on 07-Feb-2000 + updated by Grant Grundler on 23-Dec-2006 + +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The world of PCI is vast and full of (mostly unpleasant) surprises. +Since each CPU architecture implements different chip-sets and PCI devices +have different requirements (erm, "features"), the result is the PCI support +in the Linux kernel is not as trivial as one would wish. This short paper +tries to introduce all potential driver authors to Linux APIs for +PCI device drivers. + +A more complete resource is the third edition of "Linux Device Drivers" +by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. +LDD3 is available for free (under Creative Commons License) from: + + http://lwn.net/Kernel/LDD3/ + +However, keep in mind that all documents are subject to "bit rot". +Refer to the source code if things are not working as described here. + +Please send questions/comments/patches about Linux PCI API to the +"Linux PCI" mailing list. + + + +0. Structure of PCI drivers +~~~~~~~~~~~~~~~~~~~~~~~~~~~ +PCI drivers "discover" PCI devices in a system via pci_register_driver(). +Actually, it's the other way around. When the PCI generic code discovers +a new device, the driver with a matching "description" will be notified. +Details on this below. + +pci_register_driver() leaves most of the probing for devices to +the PCI layer and supports online insertion/removal of devices [thus +supporting hot-pluggable PCI, CardBus, and Express-Card in a single driver]. +pci_register_driver() call requires passing in a table of function +pointers and thus dictates the high level structure of a driver. + +Once the driver knows about a PCI device and takes ownership, the +driver generally needs to perform the following initialization: + + Enable the device + Request MMIO/IOP resources + Set the DMA mask size (for both coherent and streaming DMA) + Allocate and initialize shared control data (pci_allocate_coherent()) + Access device configuration space (if needed) + Register IRQ handler (request_irq()) + Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip) + Enable DMA/processing engines + +When done using the device, and perhaps the module needs to be unloaded, +the driver needs to take the follow steps: + Disable the device from generating IRQs + Release the IRQ (free_irq()) + Stop all DMA activity + Release DMA buffers (both streaming and coherent) + Unregister from other subsystems (e.g. scsi or netdev) + Release MMIO/IOP resources + Disable the device + +Most of these topics are covered in the following sections. +For the rest look at LDD3 or . + +If the PCI subsystem is not configured (CONFIG_PCI is not set), most of +the PCI functions described below are defined as inline functions either +completely empty or just returning an appropriate error codes to avoid +lots of ifdefs in the drivers. + + + +1. pci_register_driver() call +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +PCI device drivers call pci_register_driver() during their +initialization with a pointer to a structure describing the driver +(struct pci_driver): + + field name Description + ---------- ------------------------------------------------------ + id_table Pointer to table of device ID's the driver is + interested in. Most drivers should export this + table using MODULE_DEVICE_TABLE(pci,...). + + probe This probing function gets called (during execution + of pci_register_driver() for already existing + devices or later if a new device gets inserted) for + all PCI devices which match the ID table and are not + "owned" by the other drivers yet. This function gets + passed a "struct pci_dev *" for each device whose + entry in the ID table matches the device. The probe + function returns zero when the driver chooses to + take "ownership" of the device or an error code + (negative number) otherwise. + The probe function always gets called from process + context, so it can sleep. + + remove The remove() function gets called whenever a device + being handled by this driver is removed (either during + deregistration of the driver or when it's manually + pulled out of a hot-pluggable slot). + The remove function always gets called from process + context, so it can sleep. + + suspend Put device into low power state. + suspend_late Put device into low power state. + + resume_early Wake device from low power state. + resume Wake device from low power state. + + (Please see Documentation/power/pci.txt for descriptions + of PCI Power Management and the related functions.) + + shutdown Hook into reboot_notifier_list (kernel/sys.c). + Intended to stop any idling DMA operations. + Useful for enabling wake-on-lan (NIC) or changing + the power state of a device before reboot. + e.g. drivers/net/e100.c. + + err_handler See Documentation/PCI/pci-error-recovery.txt + + +The ID table is an array of struct pci_device_id entries ending with an +all-zero entry. Definitions with static const are generally preferred. +Use of the deprecated macro DEFINE_PCI_DEVICE_TABLE should be avoided. + +Each entry consists of: + + vendor,device Vendor and device ID to match (or PCI_ANY_ID) + + subvendor, Subsystem vendor and device ID to match (or PCI_ANY_ID) + subdevice, + + class Device class, subclass, and "interface" to match. + See Appendix D of the PCI Local Bus Spec or + include/linux/pci_ids.h for a full list of classes. + Most drivers do not need to specify class/class_mask + as vendor/device is normally sufficient. + + class_mask limit which sub-fields of the class field are compared. + See drivers/scsi/sym53c8xx_2/ for example of usage. + + driver_data Data private to the driver. + Most drivers don't need to use driver_data field. + Best practice is to use driver_data as an index + into a static list of equivalent device types, + instead of using it as a pointer. + + +Most drivers only need PCI_DEVICE() or PCI_DEVICE_CLASS() to set up +a pci_device_id table. + +New PCI IDs may be added to a device driver pci_ids table at runtime +as shown below: + +echo "vendor device subvendor subdevice class class_mask driver_data" > \ +/sys/bus/pci/drivers/{driver}/new_id + +All fields are passed in as hexadecimal values (no leading 0x). +The vendor and device fields are mandatory, the others are optional. Users +need pass only as many optional fields as necessary: + o subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF) + o class and classmask fields default to 0 + o driver_data defaults to 0UL. + +Note that driver_data must match the value used by any of the pci_device_id +entries defined in the driver. This makes the driver_data field mandatory +if all the pci_device_id entries have a non-zero driver_data value. + +Once added, the driver probe routine will be invoked for any unclaimed +PCI devices listed in its (newly updated) pci_ids list. + +When the driver exits, it just calls pci_unregister_driver() and the PCI layer +automatically calls the remove hook for all devices handled by the driver. + + +1.1 "Attributes" for driver functions/data + +Please mark the initialization and cleanup functions where appropriate +(the corresponding macros are defined in ): + + __init Initialization code. Thrown away after the driver + initializes. + __exit Exit code. Ignored for non-modular drivers. + +Tips on when/where to use the above attributes: + o The module_init()/module_exit() functions (and all + initialization functions called _only_ from these) + should be marked __init/__exit. + + o Do not mark the struct pci_driver. + + o Do NOT mark a function if you are not sure which mark to use. + Better to not mark the function than mark the function wrong. + + + +2. How to find PCI devices manually +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +PCI drivers should have a really good reason for not using the +pci_register_driver() interface to search for PCI devices. +The main reason PCI devices are controlled by multiple drivers +is because one PCI device implements several different HW services. +E.g. combined serial/parallel port/floppy controller. + +A manual search may be performed using the following constructs: + +Searching by vendor and device ID: + + struct pci_dev *dev = NULL; + while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev)) + configure_device(dev); + +Searching by class ID (iterate in a similar way): + + pci_get_class(CLASS_ID, dev) + +Searching by both vendor/device and subsystem vendor/device ID: + + pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev). + +You can use the constant PCI_ANY_ID as a wildcard replacement for +VENDOR_ID or DEVICE_ID. This allows searching for any device from a +specific vendor, for example. + +These functions are hotplug-safe. They increment the reference count on +the pci_dev that they return. You must eventually (possibly at module unload) +decrement the reference count on these devices by calling pci_dev_put(). + + + +3. Device Initialization Steps +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As noted in the introduction, most PCI drivers need the following steps +for device initialization: + + Enable the device + Request MMIO/IOP resources + Set the DMA mask size (for both coherent and streaming DMA) + Allocate and initialize shared control data (pci_allocate_coherent()) + Access device configuration space (if needed) + Register IRQ handler (request_irq()) + Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip) + Enable DMA/processing engines. + +The driver can access PCI config space registers at any time. +(Well, almost. When running BIST, config space can go away...but +that will just result in a PCI Bus Master Abort and config reads +will return garbage). + + +3.1 Enable the PCI device +~~~~~~~~~~~~~~~~~~~~~~~~~ +Before touching any device registers, the driver needs to enable +the PCI device by calling pci_enable_device(). This will: + o wake up the device if it was in suspended state, + o allocate I/O and memory regions of the device (if BIOS did not), + o allocate an IRQ (if BIOS did not). + +NOTE: pci_enable_device() can fail! Check the return value. + +[ OS BUG: we don't check resource allocations before enabling those + resources. The sequence would make more sense if we called + pci_request_resources() before calling pci_enable_device(). + Currently, the device drivers can't detect the bug when when two + devices have been allocated the same range. This is not a common + problem and unlikely to get fixed soon. + + This has been discussed before but not changed as of 2.6.19: + http://lkml.org/lkml/2006/3/2/194 +] + +pci_set_master() will enable DMA by setting the bus master bit +in the PCI_COMMAND register. It also fixes the latency timer value if +it's set to something bogus by the BIOS. pci_clear_master() will +disable DMA by clearing the bus master bit. + +If the PCI device can use the PCI Memory-Write-Invalidate transaction, +call pci_set_mwi(). This enables the PCI_COMMAND bit for Mem-Wr-Inval +and also ensures that the cache line size register is set correctly. +Check the return value of pci_set_mwi() as not all architectures +or chip-sets may support Memory-Write-Invalidate. Alternatively, +if Mem-Wr-Inval would be nice to have but is not required, call +pci_try_set_mwi() to have the system do its best effort at enabling +Mem-Wr-Inval. + + +3.2 Request MMIO/IOP resources +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Memory (MMIO), and I/O port addresses should NOT be read directly +from the PCI device config space. Use the values in the pci_dev structure +as the PCI "bus address" might have been remapped to a "host physical" +address by the arch/chip-set specific kernel support. + +See Documentation/io-mapping.txt for how to access device registers +or device memory. + +The device driver needs to call pci_request_region() to verify +no other device is already using the same address resource. +Conversely, drivers should call pci_release_region() AFTER +calling pci_disable_device(). +The idea is to prevent two devices colliding on the same address range. + +[ See OS BUG comment above. Currently (2.6.19), The driver can only + determine MMIO and IO Port resource availability _after_ calling + pci_enable_device(). ] + +Generic flavors of pci_request_region() are request_mem_region() +(for MMIO ranges) and request_region() (for IO Port ranges). +Use these for address resources that are not described by "normal" PCI +BARs. + +Also see pci_request_selected_regions() below. + + +3.3 Set the DMA mask size +~~~~~~~~~~~~~~~~~~~~~~~~~ +[ If anything below doesn't make sense, please refer to + Documentation/DMA-API.txt. This section is just a reminder that + drivers need to indicate DMA capabilities of the device and is not + an authoritative source for DMA interfaces. ] + +While all drivers should explicitly indicate the DMA capability +(e.g. 32 or 64 bit) of the PCI bus master, devices with more than +32-bit bus master capability for streaming data need the driver +to "register" this capability by calling pci_set_dma_mask() with +appropriate parameters. In general this allows more efficient DMA +on systems where System RAM exists above 4G _physical_ address. + +Drivers for all PCI-X and PCIe compliant devices must call +pci_set_dma_mask() as they are 64-bit DMA devices. + +Similarly, drivers must also "register" this capability if the device +can directly address "consistent memory" in System RAM above 4G physical +address by calling pci_set_consistent_dma_mask(). +Again, this includes drivers for all PCI-X and PCIe compliant devices. +Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are +64-bit DMA capable for payload ("streaming") data but not control +("consistent") data. + + +3.4 Setup shared control data +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared) +memory. See Documentation/DMA-API.txt for a full description of +the DMA APIs. This section is just a reminder that it needs to be done +before enabling DMA on the device. + + +3.5 Initialize device registers +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Some drivers will need specific "capability" fields programmed +or other "vendor specific" register initialized or reset. +E.g. clearing pending interrupts. + + +3.6 Register IRQ handler +~~~~~~~~~~~~~~~~~~~~~~~~ +While calling request_irq() is the last step described here, +this is often just another intermediate step to initialize a device. +This step can often be deferred until the device is opened for use. + +All interrupt handlers for IRQ lines should be registered with IRQF_SHARED +and use the devid to map IRQs to devices (remember that all PCI IRQ lines +can be shared). + +request_irq() will associate an interrupt handler and device handle +with an interrupt number. Historically interrupt numbers represent +IRQ lines which run from the PCI device to the Interrupt controller. +With MSI and MSI-X (more below) the interrupt number is a CPU "vector". + +request_irq() also enables the interrupt. Make sure the device is +quiesced and does not have any interrupts pending before registering +the interrupt handler. + +MSI and MSI-X are PCI capabilities. Both are "Message Signaled Interrupts" +which deliver interrupts to the CPU via a DMA write to a Local APIC. +The fundamental difference between MSI and MSI-X is how multiple +"vectors" get allocated. MSI requires contiguous blocks of vectors +while MSI-X can allocate several individual ones. + +MSI capability can be enabled by calling pci_enable_msi() or +pci_enable_msix() before calling request_irq(). This causes +the PCI support to program CPU vector data into the PCI device +capability registers. + +If your PCI device supports both, try to enable MSI-X first. +Only one can be enabled at a time. Many architectures, chip-sets, +or BIOSes do NOT support MSI or MSI-X and the call to pci_enable_msi/msix +will fail. This is important to note since many drivers have +two (or more) interrupt handlers: one for MSI/MSI-X and another for IRQs. +They choose which handler to register with request_irq() based on the +return value from pci_enable_msi/msix(). + +There are (at least) two really good reasons for using MSI: +1) MSI is an exclusive interrupt vector by definition. + This means the interrupt handler doesn't have to verify + its device caused the interrupt. + +2) MSI avoids DMA/IRQ race conditions. DMA to host memory is guaranteed + to be visible to the host CPU(s) when the MSI is delivered. This + is important for both data coherency and avoiding stale control data. + This guarantee allows the driver to omit MMIO reads to flush + the DMA stream. + +See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples +of MSI/MSI-X usage. + + + +4. PCI device shutdown +~~~~~~~~~~~~~~~~~~~~~~~ + +When a PCI device driver is being unloaded, most of the following +steps need to be performed: + + Disable the device from generating IRQs + Release the IRQ (free_irq()) + Stop all DMA activity + Release DMA buffers (both streaming and consistent) + Unregister from other subsystems (e.g. scsi or netdev) + Disable device from responding to MMIO/IO Port addresses + Release MMIO/IO Port resource(s) + + +4.1 Stop IRQs on the device +~~~~~~~~~~~~~~~~~~~~~~~~~~~ +How to do this is chip/device specific. If it's not done, it opens +the possibility of a "screaming interrupt" if (and only if) +the IRQ is shared with another device. + +When the shared IRQ handler is "unhooked", the remaining devices +using the same IRQ line will still need the IRQ enabled. Thus if the +"unhooked" device asserts IRQ line, the system will respond assuming +it was one of the remaining devices asserted the IRQ line. Since none +of the other devices will handle the IRQ, the system will "hang" until +it decides the IRQ isn't going to get handled and masks the IRQ (100,000 +iterations later). Once the shared IRQ is masked, the remaining devices +will stop functioning properly. Not a nice situation. + +This is another reason to use MSI or MSI-X if it's available. +MSI and MSI-X are defined to be exclusive interrupts and thus +are not susceptible to the "screaming interrupt" problem. + + +4.2 Release the IRQ +~~~~~~~~~~~~~~~~~~~ +Once the device is quiesced (no more IRQs), one can call free_irq(). +This function will return control once any pending IRQs are handled, +"unhook" the drivers IRQ handler from that IRQ, and finally release +the IRQ if no one else is using it. + + +4.3 Stop all DMA activity +~~~~~~~~~~~~~~~~~~~~~~~~~ +It's extremely important to stop all DMA operations BEFORE attempting +to deallocate DMA control data. Failure to do so can result in memory +corruption, hangs, and on some chip-sets a hard crash. + +Stopping DMA after stopping the IRQs can avoid races where the +IRQ handler might restart DMA engines. + +While this step sounds obvious and trivial, several "mature" drivers +didn't get this step right in the past. + + +4.4 Release DMA buffers +~~~~~~~~~~~~~~~~~~~~~~~ +Once DMA is stopped, clean up streaming DMA first. +I.e. unmap data buffers and return buffers to "upstream" +owners if there is one. + +Then clean up "consistent" buffers which contain the control data. + +See Documentation/DMA-API.txt for details on unmapping interfaces. + + +4.5 Unregister from other subsystems +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Most low level PCI device drivers support some other subsystem +like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your +driver isn't losing resources from that other subsystem. +If this happens, typically the symptom is an Oops (panic) when +the subsystem attempts to call into a driver that has been unloaded. + + +4.6 Disable Device from responding to MMIO/IO Port addresses +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +io_unmap() MMIO or IO Port resources and then call pci_disable_device(). +This is the symmetric opposite of pci_enable_device(). +Do not access device registers after calling pci_disable_device(). + + +4.7 Release MMIO/IO Port Resource(s) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Call pci_release_region() to mark the MMIO or IO Port range as available. +Failure to do so usually results in the inability to reload the driver. + + + +5. How to access PCI config space +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +You can use pci_(read|write)_config_(byte|word|dword) to access the config +space of a device represented by struct pci_dev *. All these functions return 0 +when successful or an error code (PCIBIOS_...) which can be translated to a text +string by pcibios_strerror. Most drivers expect that accesses to valid PCI +devices don't fail. + +If you don't have a struct pci_dev available, you can call +pci_bus_(read|write)_config_(byte|word|dword) to access a given device +and function on that bus. + +If you access fields in the standard portion of the config header, please +use symbolic names of locations and bits declared in . + +If you need to access Extended PCI Capability registers, just call +pci_find_capability() for the particular capability and it will find the +corresponding register block for you. + + + +6. Other interesting functions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +pci_get_domain_bus_and_slot() Find pci_dev corresponding to given domain, + bus and slot and number. If the device is + found, its reference count is increased. +pci_set_power_state() Set PCI Power Management state (0=D0 ... 3=D3) +pci_find_capability() Find specified capability in device's capability + list. +pci_resource_start() Returns bus start address for a given PCI region +pci_resource_end() Returns bus end address for a given PCI region +pci_resource_len() Returns the byte length of a PCI region +pci_set_drvdata() Set private driver data pointer for a pci_dev +pci_get_drvdata() Return private driver data pointer for a pci_dev +pci_set_mwi() Enable Memory-Write-Invalidate transactions. +pci_clear_mwi() Disable Memory-Write-Invalidate transactions. + + + +7. Miscellaneous hints +~~~~~~~~~~~~~~~~~~~~~~ + +When displaying PCI device names to the user (for example when a driver wants +to tell the user what card has it found), please use pci_name(pci_dev). + +Always refer to the PCI devices by a pointer to the pci_dev structure. +All PCI layer functions use this identification and it's the only +reasonable one. Don't use bus/slot/function numbers except for very +special purposes -- on systems with multiple primary buses their semantics +can be pretty complex. + +Don't try to turn on Fast Back to Back writes in your driver. All devices +on the bus need to be capable of doing it, so this is something which needs +to be handled by platform and generic code, not individual drivers. + + + +8. Vendor and device identifications +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Do not add new device or vendor IDs to include/linux/pci_ids.h unless they +are shared across multiple drivers. You can add private definitions in +your driver if they're helpful, or just use plain hex constants. + +The device IDs are arbitrary hex numbers (vendor controlled) and normally used +only in a single location, the pci_device_id table. + +Please DO submit new vendor/device IDs to http://pciids.sourceforge.net/. + + + +9. Obsolete functions +~~~~~~~~~~~~~~~~~~~~~ + +There are several functions which you might come across when trying to +port an old driver to the new PCI interface. They are no longer present +in the kernel as they aren't compatible with hotplug or PCI domains or +having sane locking. + +pci_find_device() Superseded by pci_get_device() +pci_find_subsys() Superseded by pci_get_subsys() +pci_find_slot() Superseded by pci_get_domain_bus_and_slot() +pci_get_slot() Superseded by pci_get_domain_bus_and_slot() + + +The alternative is the traditional PCI device driver that walks PCI +device lists. This is still possible but discouraged. + + + +10. MMIO Space and "Write Posting" +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Converting a driver from using I/O Port space to using MMIO space +often requires some additional changes. Specifically, "write posting" +needs to be handled. Many drivers (e.g. tg3, acenic, sym53c8xx_2) +already do this. I/O Port space guarantees write transactions reach the PCI +device before the CPU can continue. Writes to MMIO space allow the CPU +to continue before the transaction reaches the PCI device. HW weenies +call this "Write Posting" because the write completion is "posted" to +the CPU before the transaction has reached its destination. + +Thus, timing sensitive code should add readl() where the CPU is +expected to wait before doing other work. The classic "bit banging" +sequence works fine for I/O Port space: + + for (i = 8; --i; val >>= 1) { + outb(val & 1, ioport_reg); /* write bit */ + udelay(10); + } + +The same sequence for MMIO space should be: + + for (i = 8; --i; val >>= 1) { + writeb(val & 1, mmio_reg); /* write bit */ + readb(safe_mmio_reg); /* flush posted write */ + udelay(10); + } + +It is important that "safe_mmio_reg" not have any side effects that +interferes with the correct operation of the device. + +Another case to watch out for is when resetting a PCI device. Use PCI +Configuration space reads to flush the writel(). This will gracefully +handle the PCI master abort on all platforms if the PCI device is +expected to not respond to a readl(). Most x86 platforms will allow +MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage +(e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail"). + diff --git a/kernel/Documentation/PCI/pcieaer-howto.txt b/kernel/Documentation/PCI/pcieaer-howto.txt new file mode 100644 index 000000000..b4987c0bc --- /dev/null +++ b/kernel/Documentation/PCI/pcieaer-howto.txt @@ -0,0 +1,270 @@ + The PCI Express Advanced Error Reporting Driver Guide HOWTO + T. Long Nguyen + Yanmin Zhang + 07/29/2006 + + +1. Overview + +1.1 About this guide + +This guide describes the basics of the PCI Express Advanced Error +Reporting (AER) driver and provides information on how to use it, as +well as how to enable the drivers of endpoint devices to conform with +PCI Express AER driver. + +1.2 Copyright (C) Intel Corporation 2006. + +1.3 What is the PCI Express AER Driver? + +PCI Express error signaling can occur on the PCI Express link itself +or on behalf of transactions initiated on the link. PCI Express +defines two error reporting paradigms: the baseline capability and +the Advanced Error Reporting capability. The baseline capability is +required of all PCI Express components providing a minimum defined +set of error reporting requirements. Advanced Error Reporting +capability is implemented with a PCI Express advanced error reporting +extended capability structure providing more robust error reporting. + +The PCI Express AER driver provides the infrastructure to support PCI +Express Advanced Error Reporting capability. The PCI Express AER +driver provides three basic functions: + +- Gathers the comprehensive error information if errors occurred. +- Reports error to the users. +- Performs error recovery actions. + +AER driver only attaches root ports which support PCI-Express AER +capability. + + +2. User Guide + +2.1 Include the PCI Express AER Root Driver into the Linux Kernel + +The PCI Express AER Root driver is a Root Port service driver attached +to the PCI Express Port Bus driver. If a user wants to use it, the driver +has to be compiled. Option CONFIG_PCIEAER supports this capability. It +depends on CONFIG_PCIEPORTBUS, so pls. set CONFIG_PCIEPORTBUS=y and +CONFIG_PCIEAER = y. + +2.2 Load PCI Express AER Root Driver +There is a case where a system has AER support in BIOS. Enabling the AER +Root driver and having AER support in BIOS may result unpredictable +behavior. To avoid this conflict, a successful load of the AER Root driver +requires ACPI _OSC support in the BIOS to allow the AER Root driver to +request for native control of AER. See the PCI FW 3.0 Specification for +details regarding OSC usage. Currently, lots of firmwares don't provide +_OSC support while they use PCI Express. To support such firmwares, +forceload, a parameter of type bool, could enable AER to continue to +be initiated although firmwares have no _OSC support. To enable the +walkaround, pls. add aerdriver.forceload=y to kernel boot parameter line +when booting kernel. Note that forceload=n by default. + +nosourceid, another parameter of type bool, can be used when broken +hardware (mostly chipsets) has root ports that cannot obtain the reporting +source ID. nosourceid=n by default. + +2.3 AER error output +When a PCI-E AER error is captured, an error message will be outputted to +console. If it's a correctable error, it is outputted as a warning. +Otherwise, it is printed as an error. So users could choose different +log level to filter out correctable error messages. + +Below shows an example: +0000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID) +0000:50:00.0: device [8086:0329] error status/mask=00100000/00000000 +0000:50:00.0: [20] Unsupported Request (First) +0000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100 + +In the example, 'Requester ID' means the ID of the device who sends +the error message to root port. Pls. refer to pci express specs for +other fields. + + +3. Developer Guide + +To enable AER aware support requires a software driver to configure +the AER capability structure within its device and to provide callbacks. + +To support AER better, developers need understand how AER does work +firstly. + +PCI Express errors are classified into two types: correctable errors +and uncorrectable errors. This classification is based on the impacts +of those errors, which may result in degraded performance or function +failure. + +Correctable errors pose no impacts on the functionality of the +interface. The PCI Express protocol can recover without any software +intervention or any loss of data. These errors are detected and +corrected by hardware. Unlike correctable errors, uncorrectable +errors impact functionality of the interface. Uncorrectable errors +can cause a particular transaction or a particular PCI Express link +to be unreliable. Depending on those error conditions, uncorrectable +errors are further classified into non-fatal errors and fatal errors. +Non-fatal errors cause the particular transaction to be unreliable, +but the PCI Express link itself is fully functional. Fatal errors, on +the other hand, cause the link to be unreliable. + +When AER is enabled, a PCI Express device will automatically send an +error message to the PCIe root port above it when the device captures +an error. The Root Port, upon receiving an error reporting message, +internally processes and logs the error message in its PCI Express +capability structure. Error information being logged includes storing +the error reporting agent's requestor ID into the Error Source +Identification Registers and setting the error bits of the Root Error +Status Register accordingly. If AER error reporting is enabled in Root +Error Command Register, the Root Port generates an interrupt if an +error is detected. + +Note that the errors as described above are related to the PCI Express +hierarchy and links. These errors do not include any device specific +errors because device specific errors will still get sent directly to +the device driver. + +3.1 Configure the AER capability structure + +AER aware drivers of PCI Express component need change the device +control registers to enable AER. They also could change AER registers, +including mask and severity registers. Helper function +pci_enable_pcie_error_reporting could be used to enable AER. See +section 3.3. + +3.2. Provide callbacks + +3.2.1 callback reset_link to reset pci express link + +This callback is used to reset the pci express physical link when a +fatal error happens. The root port aer service driver provides a +default reset_link function, but different upstream ports might +have different specifications to reset pci express link, so all +upstream ports should provide their own reset_link functions. + +In struct pcie_port_service_driver, a new pointer, reset_link, is +added. + +pci_ers_result_t (*reset_link) (struct pci_dev *dev); + +Section 3.2.2.2 provides more detailed info on when to call +reset_link. + +3.2.2 PCI error-recovery callbacks + +The PCI Express AER Root driver uses error callbacks to coordinate +with downstream device drivers associated with a hierarchy in question +when performing error recovery actions. + +Data struct pci_driver has a pointer, err_handler, to point to +pci_error_handlers who consists of a couple of callback function +pointers. AER driver follows the rules defined in +pci-error-recovery.txt except pci express specific parts (e.g. +reset_link). Pls. refer to pci-error-recovery.txt for detailed +definitions of the callbacks. + +Below sections specify when to call the error callback functions. + +3.2.2.1 Correctable errors + +Correctable errors pose no impacts on the functionality of +the interface. The PCI Express protocol can recover without any +software intervention or any loss of data. These errors do not +require any recovery actions. The AER driver clears the device's +correctable error status register accordingly and logs these errors. + +3.2.2.2 Non-correctable (non-fatal and fatal) errors + +If an error message indicates a non-fatal error, performing link reset +at upstream is not required. The AER driver calls error_detected(dev, +pci_channel_io_normal) to all drivers associated within a hierarchy in +question. for example, +EndPoint<==>DownstreamPort B<==>UpstreamPort A<==>RootPort. +If Upstream port A captures an AER error, the hierarchy consists of +Downstream port B and EndPoint. + +A driver may return PCI_ERS_RESULT_CAN_RECOVER, +PCI_ERS_RESULT_DISCONNECT, or PCI_ERS_RESULT_NEED_RESET, depending on +whether it can recover or the AER driver calls mmio_enabled as next. + +If an error message indicates a fatal error, kernel will broadcast +error_detected(dev, pci_channel_io_frozen) to all drivers within +a hierarchy in question. Then, performing link reset at upstream is +necessary. As different kinds of devices might use different approaches +to reset link, AER port service driver is required to provide the +function to reset link. Firstly, kernel looks for if the upstream +component has an aer driver. If it has, kernel uses the reset_link +callback of the aer driver. If the upstream component has no aer driver +and the port is downstream port, we will perform a hot reset as the +default by setting the Secondary Bus Reset bit of the Bridge Control +register associated with the downstream port. As for upstream ports, +they should provide their own aer service drivers with reset_link +function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and +reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes +to mmio_enabled. + +3.3 helper functions + +3.3.1 int pci_enable_pcie_error_reporting(struct pci_dev *dev); +pci_enable_pcie_error_reporting enables the device to send error +messages to root port when an error is detected. Note that devices +don't enable the error reporting by default, so device drivers need +call this function to enable it. + +3.3.2 int pci_disable_pcie_error_reporting(struct pci_dev *dev); +pci_disable_pcie_error_reporting disables the device to send error +messages to root port when an error is detected. + +3.3.3 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev); +pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable +error status register. + +3.4 Frequent Asked Questions + +Q: What happens if a PCI Express device driver does not provide an +error recovery handler (pci_driver->err_handler is equal to NULL)? + +A: The devices attached with the driver won't be recovered. If the +error is fatal, kernel will print out warning messages. Please refer +to section 3 for more information. + +Q: What happens if an upstream port service driver does not provide +callback reset_link? + +A: Fatal error recovery will fail if the errors are reported by the +upstream ports who are attached by the service driver. + +Q: How does this infrastructure deal with driver that is not PCI +Express aware? + +A: This infrastructure calls the error callback functions of the +driver when an error happens. But if the driver is not aware of +PCI Express, the device might not report its own errors to root +port. + +Q: What modifications will that driver need to make it compatible +with the PCI Express AER Root driver? + +A: It could call the helper functions to enable AER in devices and +cleanup uncorrectable status register. Pls. refer to section 3.3. + + +4. Software error injection + +Debugging PCIe AER error recovery code is quite difficult because it +is hard to trigger real hardware errors. Software based error +injection can be used to fake various kinds of PCIe errors. + +First you should enable PCIe AER software error injection in kernel +configuration, that is, following item should be in your .config. + +CONFIG_PCIEAER_INJECT=y or CONFIG_PCIEAER_INJECT=m + +After reboot with new kernel or insert the module, a device file named +/dev/aer_inject should be created. + +Then, you need a user space tool named aer-inject, which can be gotten +from: + http://www.kernel.org/pub/linux/utils/pci/aer-inject/ + +More information about aer-inject can be found in the document comes +with its source code. -- cgit 1.2.3-korg