========================================== Setting Up a Service VM as an IPv6 vRouter ========================================== Now we can start to set up a service VM as an IPv6 vRouter. For exemplary purpose, we assume: * The hostname of Open Daylight Controller Node is ``opnfv-odl-controller``, and the host IP address is ``192.168.0.30`` * The hostname of OpenStack Controller Node is ``opnfv-os-controller``, and the host IP address is ``192.168.0.10`` * The hostname of OpenStack Compute Node is ``opnfv-os-compute``, and the host IP address is ``192.168.0.20`` * We use ``opnfv`` as username to login. * We use ``devstack`` to install OpenStack Kilo, and the directory is ``~/devstack`` * Note: all IP addresses as shown below are for exemplary purpose. *************************************************** Source the Credentials in OpenStack Controller Node *************************************************** **SETUP-SVM-1**: Login with username ``opnfv`` in OpenStack Controller Node ``opnfv-os-controller``. Start a new terminal, and change directory to where OpenStack is installed. .. code-block:: bash cd ~/devstack **SETUP-SVM-2**: Source the credentials. .. code-block:: bash opnfv@opnfv-os-controller:~/devstack$ source openrc admin demo Please **NOTE** that the method of sourcing tenant credentials may vary depending on installers. **Please refer to relevant documentation of installers if you encounter any issue**. ************************************** Add External Connectivity to ``br-ex`` ************************************** Because we need to manually create networks/subnets to achieve the IPv6 vRouter, we have used the flag ``NEUTRON_CREATE_INITIAL_NETWORKS=False`` in ``local.conf`` file. When this flag is set to False, ``devstack`` does not create any networks/subnets during the setup phase. Now we have to move the physical interface (i.e. the public network interface) to ``br-ex``, including moving the public IP address and setting up default route. **Please note that this step may already have been done when you use a different installer to deploy OpenStack because that installer may have already moved the physical interface to** ``br-ex`` **during deployment**. In OpenStack Controller Node ``opnfv-os-controller``, ``eth1`` is configured to provide external/public connectivity for both IPv4 and IPv6 (optional). So let us add this interface to ``br-ex`` and move the IP address, including the default route from ``eth1`` to ``br-ex``. **SETUP-SVM-3**: Add ``eth1`` to ``br-ex`` and move the IP address and the default route from ``eth1`` to ``br-ex`` .. code-block:: bash sudo ip addr del 198.59.156.113/24 dev eth1 sudo ovs-vsctl add-port br-ex eth1 sudo ifconfig eth1 up sudo ip addr add 198.59.156.113/24 dev br-ex sudo ifconfig br-ex up sudo ip route add default via 198.59.156.1 dev br-ex Please note that: * The IP address ``198.59.156.113`` and related subnet and gateway addressed in the command below are for exemplary purpose. **Please replace them with the IP addresses of your actual network**. * **This can be automated in /etc/network/interfaces**. **SETUP-SVM-4**: Verify that ``br-ex`` now has the original external IP address, and that the default route is on ``br-ex`` .. code-block:: bash opnfv@opnfv-os-controller:~/devstack$ ip a s br-ex 38: br-ex: mtu 1430 qdisc noqueue state UNKNOWN group default link/ether 00:50:56:82:42:d1 brd ff:ff:ff:ff:ff:ff inet 198.59.156.113/24 brd 198.59.156.255 scope global br-ex valid_lft forever preferred_lft forever inet6 fe80::543e:28ff:fe70:4426/64 scope link valid_lft forever preferred_lft forever opnfv@opnfv-os-controller:~/devstack$ opnfv@opnfv-os-controller:~/devstack$ ip route default via 198.59.156.1 dev br-ex 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.10 192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1 198.59.156.0/24 dev br-ex proto kernel scope link src 198.59.156.113 Please note that The IP addresses above are exemplary purpose ******************************************************** Create IPv4 Subnet and Router with External Connectivity ******************************************************** **SETUP-SVM-5**: Create a Neutron router ``ipv4-router`` which needs to provide external connectivity. .. code-block:: bash neutron router-create ipv4-router **SETUP-SVM-6**: Create an external network/subnet ``ext-net`` using the appropriate values based on the data-center physical network setup. .. code-block:: bash neutron net-create --router:external ext-net neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24 Please note that the IP addresses in the command above are for exemplary purpose. **Please replace the IP addresses of your actual network**. **SETUP-SVM-7**: Associate the ``ext-net`` to the Neutron router ``ipv4-router``. .. code-block:: bash neutron router-gateway-set ipv4-router ext-net **SETUP-SVM-8**: Create an internal/tenant IPv4 network ``ipv4-int-network1`` .. code-block:: bash neutron net-create ipv4-int-network1 **SETUP-SVM-9**: Create an IPv4 subnet ``ipv4-int-subnet1`` in the internal network ``ipv4-int-network1`` .. code-block:: bash neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 ipv4-int-network1 20.0.0.0/24 **SETUP-SVM-10**: Associate the IPv4 internal subnet ``ipv4-int-subnet1`` to the Neutron router ``ipv4-router``. .. code-block:: bash neutron router-interface-add ipv4-router ipv4-int-subnet1 ******************************************************** Create IPv6 Subnet and Router with External Connectivity ******************************************************** Now, let us create a second neutron router where we can "manually" spawn a ``radvd`` daemon to simulate an external IPv6 router. **SETUP-SVM-11**: Create a second Neutron router ``ipv6-router`` which needs to provide external connectivity .. code-block:: bash neutron router-create ipv6-router **SETUP-SVM-12**: Associate the ``ext-net`` to the Neutron router ``ipv6-router`` .. code-block:: bash neutron router-gateway-set ipv6-router ext-net **SETUP-SVM-13**: Create a second internal/tenant IPv4 network ``ipv4-int-network2`` .. code-block:: bash neutron net-create ipv4-int-network2 **SETUP-SVM-14**: Create an IPv4 subnet ``ipv4-int-subnet2`` for the ``ipv6-router`` internal network ``ipv4-int-network2`` .. code-block:: bash neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 ipv4-int-network2 10.0.0.0/24 **SETUP-SVM-15**: Associate the IPv4 internal subnet ``ipv4-int-subnet2`` to the Neutron router ``ipv6-router``. .. code-block:: bash neutron router-interface-add ipv6-router ipv4-int-subnet2 ************************************************** Prepare Image, Metadata and Keypair for Service VM ************************************************** **SETUP-SVM-16**: Download ``fedora22`` image which would be used as ``vRouter`` .. code-block:: bash glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare --is-public true --copy-from https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2 **SETUP-SVM-17**: Create a keypair .. code-block:: bash nova keypair-add vRouterKey > ~/vRouterKey **SETUP-SVM-18**: Create ports for ``vRouter`` and both the VMs with some specific MAC addresses. .. code-block:: bash neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2 neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1 neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1 neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1 ********************************************************************************************************** Boot Service VM (``vRouter``) with ``eth0`` on ``ipv4-int-network2`` and ``eth1`` on ``ipv4-int-network1`` ********************************************************************************************************** Let us boot the service VM (``vRouter``) with ``eth0`` interface on ``ipv4-int-network2`` connecting to ``ipv6-router``, and ``eth1`` interface on ``ipv4-int-network1`` connecting to ``ipv4-router``. **SETUP-SVM-19**: Boot the ``vRouter`` using ``Fedora22`` image on the OpenStack Compute Node with hostname ``opnfv-os-compute`` .. code-block:: bash nova boot --image Fedora22 --flavor m1.small --user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt --availability-zone nova:opnfv-os-compute --nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') --nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') --key-name vRouterKey vRouter Please **note** that ``/opt/stack/opnfv_os_ipv6_poc/metadata.txt`` is used to enable the ``vRouter`` to automatically spawn a ``radvd``, and * Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix ``2001:db8:0:2::/64`` on its internal interface (``eth1``). * Forward IPv6 traffic from internal interface (``eth1``) **SETUP-SVM-20**: Verify that ``Fedora22`` image boots up successfully and vRouter has ``ssh`` keys properly injected .. code-block:: bash nova list nova console-log vRouter Please note that **it may take a few minutes** for the necessary packages to get installed and ``ssh`` keys to be injected. .. code-block:: bash # Sample Output [ 762.884523] cloud-init[871]: ec2: ############################################################# [ 762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS----- [ 762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA) [ 762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS----- [ 762.979554] cloud-init[871]: ec2: ############################################################# ******************************************* Boot Two Other VMs in ``ipv4-int-network1`` ******************************************* In order to verify that the setup is working, let us create two cirros VMs with ``eth1`` interface on the ``ipv4-int-network1``, i.e., connecting to ``vRouter`` ``eth1`` interface for internal network. We will have to configure appropriate ``mtu`` on the VMs' interface by taking into account the tunneling overhead and any physical switch requirements. If so, push the ``mtu`` to the VM either using ``dhcp`` options or via ``meta-data``. **SETUP-SVM-21**: Create VM1 on OpenStack Controller Node with hostname ``opnfv-os-controller`` .. code-block:: bash nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') --availability-zone nova:opnfv-os-controller --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM1 **SETUP-SVM-22**: Create VM2 on OpenStack Compute Node with hostname ``opnfv-os-compute`` .. code-block:: bash nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny --nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') --availability-zone nova:opnfv-os-compute --key-name vRouterKey --user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh VM2 **SETUP-SVM-23**: Confirm that both the VMs are successfully booted. .. code-block:: bash nova list nova console-log VM1 nova console-log VM2 ********************************** Spawn ``RADVD`` in ``ipv6-router`` ********************************** Let us manually spawn a ``radvd`` daemon inside ``ipv6-router`` namespace to simulate an external router. First of all, we will have to identify the ``ipv6-router`` namespace and move to the namespace. Please **NOTE** that in case of HA (High Availability) deployment model where multiple controller nodes are used, ``ipv6-router`` created in step **SETUP-SVM-11** could be in any of the controller node. Thus you need to identify in which controller node ``ipv6-router`` is created in order to manually spawn ``radvd`` daemon inside the ``ipv6-router`` namespace in steps **SETUP-SVM-24** through **SETUP-SVM-30**. The following command in Neutron will display the controller on which the ``ipv6-router`` is spawned. .. code-block:: bash neutron l3-agent-list-hosting-router ipv6-router Then you login to that controller and execute steps **SETUP-SVM-24** through **SETUP-SVM-30** **SETUP-SVM-24**: identify the ``ipv6-router`` namespace and move to the namespace .. code-block:: bash sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | awk '{print $2}') bash **SETUP-SVM-25**: Upon successful execution of the above command, you will be in the router namespace. Now let us configure the IPv6 address on the interface. .. code-block:: bash export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}') ip -6 addr add 2001:db8:0:1::1 dev $router_interface **SETUP-SVM-26**: Update the sample file ``/opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf`` with ``$router_interface``. .. code-block:: bash cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf **SETUP-SVM-27**: Spawn a ``radvd`` daemon to simulate an external router. This ``radvd`` daemon advertises an IPv6 subnet prefix of ``2001:db8:0:1::/64`` using RA (Router Advertisement) on its $router_interface so that ``eth0`` interface of ``vRouter`` automatically configures an IPv6 SLAAC address. .. code-block:: bash $radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog **SETUP-SVM-28**: Add an IPv6 downstream route pointing to the ``eth0`` interface of vRouter. .. code-block:: bash ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 **SETUP-SVM-29**: The routing table should now look similar to something shown below. .. code-block:: bash ip -6 route show 2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256 2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256 fe80::/64 dev qr-42968b9e-62 proto kernel metric 256 **SETUP-SVM-30**: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows: .. code-block:: bash vRouter eth0 interface would have the following IPv6 address: 2001:db8:0:1:f816:3eff:fe11:1111/64 vRouter eth1 interface would have the following IPv6 address: 2001:db8:0:2::1/64 VM1 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe33:3333/64 VM2 would have the following IPv6 address: 2001:db8:0:2:f816:3eff:fe44:4444/64 ******************************** Testing to Verify Setup Complete ******************************** Now, let us ``ssh`` to one of the VMs, e.g. VM1, to confirm that it has successfully configured the IPv6 address using ``SLAAC`` with prefix ``2001:db8:0:2::/64`` from ``vRouter``. Please note that you need to get the IPv4 address associated to VM1. This can be inferred from ``nova list`` command. **SETUP-SVM-31**: ``ssh`` VM1 .. code-block:: bash ssh -i /home/odl/vRouterKey cirros@ If everything goes well, ``ssh`` will be successful and you will be logged into VM1. Run some commands to verify that IPv6 addresses are configured on ``eth0`` interface. **SETUP-SVM-32**: Show an IPv6 address with a prefix of ``2001:db8:0:2::/64`` .. code-block:: bash ip address show **SETUP-SVM-33**: ping some external IPv6 address, e.g. ``ipv6-router`` .. code-block:: bash ping6 2001:db8:0:1::1 If the above ping6 command succeeds, it implies that ``vRouter`` was able to successfully forward the IPv6 traffic to reach external ``ipv6-router``. **SETUP-SVM-34**: When all tests show that the setup works as expected, You can now exit the ``ipv6-router`` namespace. .. code-block:: bash exit ********** Next Steps ********** Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter. This setup allows further open innovation by any 3rd-party. Please refer to relevant sections in User's Guide for further value-added services on this IPv6 vRouter.