diff options
author | Morgan Richomme <morgan.richomme@orange.com> | 2016-10-13 18:02:06 +0200 |
---|---|---|
committer | Morgan Richomme <morgan.richomme@orange.com> | 2016-10-14 09:13:46 +0000 |
commit | b645377817ed4bf8038b29b07add0b8794d9bdb0 (patch) | |
tree | 8efc2fd3f7655136ec8d742f749755bc35567f6a /docs/com/test/examples/math.html | |
parent | 24ec3b4494f146416742f34d00f692fe5da79ea9 (diff) |
remove 3rd part files with MIT or BSD license
Change-Id: I941093e91897d1425720b5acdbf072cf620f131d
Signed-off-by: Morgan Richomme <morgan.richomme@orange.com>
(cherry picked from commit 6bb45e4d1ba014c1dd33bedff49be8afa9426d17)
Diffstat (limited to 'docs/com/test/examples/math.html')
-rwxr-xr-x | docs/com/test/examples/math.html | 185 |
1 files changed, 0 insertions, 185 deletions
diff --git a/docs/com/test/examples/math.html b/docs/com/test/examples/math.html deleted file mode 100755 index 1b80e034d..000000000 --- a/docs/com/test/examples/math.html +++ /dev/null @@ -1,185 +0,0 @@ -<!doctype html> -<html lang="en"> - - <head> - <meta charset="utf-8"> - - <title>reveal.js - Math Plugin</title> - - <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"> - - <link rel="stylesheet" href="../../css/reveal.css"> - <link rel="stylesheet" href="../../css/theme/night.css" id="theme"> - </head> - - <body> - - <div class="reveal"> - - <div class="slides"> - - <section> - <h2>reveal.js Math Plugin</h2> - <p>A thin wrapper for MathJax</p> - </section> - - <section> - <h3>The Lorenz Equations</h3> - - \[\begin{aligned} - \dot{x} & = \sigma(y-x) \\ - \dot{y} & = \rho x - y - xz \\ - \dot{z} & = -\beta z + xy - \end{aligned} \] - </section> - - <section> - <h3>The Cauchy-Schwarz Inequality</h3> - - <script type="math/tex; mode=display"> - \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) - </script> - </section> - - <section> - <h3>A Cross Product Formula</h3> - - \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} - \mathbf{i} & \mathbf{j} & \mathbf{k} \\ - \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ - \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 - \end{vmatrix} \] - </section> - - <section> - <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> - - \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] - </section> - - <section> - <h3>An Identity of Ramanujan</h3> - - \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = - 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} - {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] - </section> - - <section> - <h3>A Rogers-Ramanujan Identity</h3> - - \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = - \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] - </section> - - <section> - <h3>Maxwell’s Equations</h3> - - \[ \begin{aligned} - \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ - \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ - \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} - \] - </section> - - <section> - <section> - <h3>The Lorenz Equations</h3> - - <div class="fragment"> - \[\begin{aligned} - \dot{x} & = \sigma(y-x) \\ - \dot{y} & = \rho x - y - xz \\ - \dot{z} & = -\beta z + xy - \end{aligned} \] - </div> - </section> - - <section> - <h3>The Cauchy-Schwarz Inequality</h3> - - <div class="fragment"> - \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] - </div> - </section> - - <section> - <h3>A Cross Product Formula</h3> - - <div class="fragment"> - \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} - \mathbf{i} & \mathbf{j} & \mathbf{k} \\ - \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ - \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 - \end{vmatrix} \] - </div> - </section> - - <section> - <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> - - <div class="fragment"> - \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] - </div> - </section> - - <section> - <h3>An Identity of Ramanujan</h3> - - <div class="fragment"> - \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = - 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} - {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] - </div> - </section> - - <section> - <h3>A Rogers-Ramanujan Identity</h3> - - <div class="fragment"> - \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = - \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] - </div> - </section> - - <section> - <h3>Maxwell’s Equations</h3> - - <div class="fragment"> - \[ \begin{aligned} - \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ - \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ - \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} - \] - </div> - </section> - </section> - - </div> - - </div> - - <script src="../../lib/js/head.min.js"></script> - <script src="../../js/reveal.js"></script> - - <script> - - Reveal.initialize({ - history: true, - transition: 'linear', - - math: { - // mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js', - config: 'TeX-AMS_HTML-full' - }, - - dependencies: [ - { src: '../../lib/js/classList.js' }, - { src: '../../plugin/math/math.js', async: true } - ] - }); - - </script> - - </body> -</html> |