/* * Bosch BMC150 three-axis magnetic field sensor driver * * Copyright (c) 2015, Intel Corporation. * * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: * * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BMC150_MAGN_DRV_NAME "bmc150_magn" #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" #define BMC150_MAGN_REG_CHIP_ID 0x40 #define BMC150_MAGN_CHIP_ID_VAL 0x32 #define BMC150_MAGN_REG_X_L 0x42 #define BMC150_MAGN_REG_X_M 0x43 #define BMC150_MAGN_REG_Y_L 0x44 #define BMC150_MAGN_REG_Y_M 0x45 #define BMC150_MAGN_SHIFT_XY_L 3 #define BMC150_MAGN_REG_Z_L 0x46 #define BMC150_MAGN_REG_Z_M 0x47 #define BMC150_MAGN_SHIFT_Z_L 1 #define BMC150_MAGN_REG_RHALL_L 0x48 #define BMC150_MAGN_REG_RHALL_M 0x49 #define BMC150_MAGN_SHIFT_RHALL_L 2 #define BMC150_MAGN_REG_INT_STATUS 0x4A #define BMC150_MAGN_REG_POWER 0x4B #define BMC150_MAGN_MASK_POWER_CTL BIT(0) #define BMC150_MAGN_REG_OPMODE_ODR 0x4C #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) #define BMC150_MAGN_SHIFT_OPMODE 1 #define BMC150_MAGN_MODE_NORMAL 0x00 #define BMC150_MAGN_MODE_FORCED 0x01 #define BMC150_MAGN_MODE_SLEEP 0x03 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) #define BMC150_MAGN_SHIFT_ODR 3 #define BMC150_MAGN_REG_INT 0x4D #define BMC150_MAGN_REG_INT_DRDY 0x4E #define BMC150_MAGN_MASK_DRDY_EN BIT(7) #define BMC150_MAGN_SHIFT_DRDY_EN 7 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) #define BMC150_MAGN_REG_LOW_THRESH 0x4F #define BMC150_MAGN_REG_HIGH_THRESH 0x50 #define BMC150_MAGN_REG_REP_XY 0x51 #define BMC150_MAGN_REG_REP_Z 0x52 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) #define BMC150_MAGN_REG_TRIM_START 0x5D #define BMC150_MAGN_REG_TRIM_END 0x71 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 /* Time from SUSPEND to SLEEP */ #define BMC150_MAGN_START_UP_TIME_MS 3 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) enum bmc150_magn_axis { AXIS_X, AXIS_Y, AXIS_Z, RHALL, AXIS_XYZ_MAX = RHALL, AXIS_XYZR_MAX, }; enum bmc150_magn_power_modes { BMC150_MAGN_POWER_MODE_SUSPEND, BMC150_MAGN_POWER_MODE_SLEEP, BMC150_MAGN_POWER_MODE_NORMAL, }; struct bmc150_magn_trim_regs { s8 x1; s8 y1; __le16 reserved1; u8 reserved2; __le16 z4; s8 x2; s8 y2; __le16 reserved3; __le16 z2; __le16 z1; __le16 xyz1; __le16 z3; s8 xy2; u8 xy1; } __packed; struct bmc150_magn_data { struct i2c_client *client; /* * 1. Protect this structure. * 2. Serialize sequences that power on/off the device and access HW. */ struct mutex mutex; struct regmap *regmap; /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */ s32 buffer[6]; struct iio_trigger *dready_trig; bool dready_trigger_on; int max_odr; }; static const struct { int freq; u8 reg_val; } bmc150_magn_samp_freq_table[] = { {2, 0x01}, {6, 0x02}, {8, 0x03}, {10, 0x00}, {15, 0x04}, {20, 0x05}, {25, 0x06}, {30, 0x07} }; enum bmc150_magn_presets { LOW_POWER_PRESET, REGULAR_PRESET, ENHANCED_REGULAR_PRESET, HIGH_ACCURACY_PRESET }; static const struct bmc150_magn_preset { u8 rep_xy; u8 rep_z; u8 odr; } bmc150_magn_presets_table[] = { [LOW_POWER_PRESET] = {3, 3, 10}, [REGULAR_PRESET] = {9, 15, 10}, [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, [HIGH_ACCURACY_PRESET] = {47, 83, 20}, }; #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMC150_MAGN_REG_POWER: case BMC150_MAGN_REG_OPMODE_ODR: case BMC150_MAGN_REG_INT: case BMC150_MAGN_REG_INT_DRDY: case BMC150_MAGN_REG_LOW_THRESH: case BMC150_MAGN_REG_HIGH_THRESH: case BMC150_MAGN_REG_REP_XY: case BMC150_MAGN_REG_REP_Z: return true; default: return false; }; } static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMC150_MAGN_REG_X_L: case BMC150_MAGN_REG_X_M: case BMC150_MAGN_REG_Y_L: case BMC150_MAGN_REG_Y_M: case BMC150_MAGN_REG_Z_L: case BMC150_MAGN_REG_Z_M: case BMC150_MAGN_REG_RHALL_L: case BMC150_MAGN_REG_RHALL_M: case BMC150_MAGN_REG_INT_STATUS: return true; default: return false; } } static const struct regmap_config bmc150_magn_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BMC150_MAGN_REG_TRIM_END, .cache_type = REGCACHE_RBTREE, .writeable_reg = bmc150_magn_is_writeable_reg, .volatile_reg = bmc150_magn_is_volatile_reg, }; static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, enum bmc150_magn_power_modes mode, bool state) { int ret; switch (mode) { case BMC150_MAGN_POWER_MODE_SUSPEND: ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, BMC150_MAGN_MASK_POWER_CTL, !state); if (ret < 0) return ret; usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); return 0; case BMC150_MAGN_POWER_MODE_SLEEP: return regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_SLEEP << BMC150_MAGN_SHIFT_OPMODE); case BMC150_MAGN_POWER_MODE_NORMAL: return regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_NORMAL << BMC150_MAGN_SHIFT_OPMODE); } return -EINVAL; } static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) { #ifdef CONFIG_PM int ret; if (on) { ret = pm_runtime_get_sync(&data->client->dev); } else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "failed to change power state to %d\n", on); if (on) pm_runtime_put_noidle(&data->client->dev); return ret; } #endif return 0; } static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) { int ret, reg_val; u8 i, odr_val; ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); if (ret < 0) return ret; odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { *val = bmc150_magn_samp_freq_table[i].freq; return 0; } return -EINVAL; } static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) { int ret; u8 i; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { if (bmc150_magn_samp_freq_table[i].freq == val) { ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_ODR, bmc150_magn_samp_freq_table[i]. reg_val << BMC150_MAGN_SHIFT_ODR); if (ret < 0) return ret; return 0; } } return -EINVAL; } static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, int rep_z, int odr) { int ret, reg_val, max_odr; if (rep_xy <= 0) { ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, ®_val); if (ret < 0) return ret; rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); } if (rep_z <= 0) { ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, ®_val); if (ret < 0) return ret; rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); } if (odr <= 0) { ret = bmc150_magn_get_odr(data, &odr); if (ret < 0) return ret; } /* the maximum selectable read-out frequency from datasheet */ max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); if (odr > max_odr) { dev_err(&data->client->dev, "Can't set oversampling with sampling freq %d\n", odr); return -EINVAL; } data->max_odr = max_odr; return 0; } static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, u16 rhall) { s16 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); if (x == BMC150_MAGN_XY_OVERFLOW_VAL) return S32_MIN; if (!rhall) rhall = xyz1; val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * ((s32)val)) >> 7)) + (((s32)val) * ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + (((s16)tregs->x1) << 3); return (s32)val; } static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, u16 rhall) { s16 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); if (y == BMC150_MAGN_XY_OVERFLOW_VAL) return S32_MIN; if (!rhall) rhall = xyz1; val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * ((s32)val)) >> 7)) + (((s32)val) * ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + (((s16)tregs->y1) << 3); return (s32)val; } static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, u16 rhall) { s32 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); u16 z1 = le16_to_cpu(tregs->z1); s16 z2 = le16_to_cpu(tregs->z2); s16 z3 = le16_to_cpu(tregs->z3); s16 z4 = le16_to_cpu(tregs->z4); if (z == BMC150_MAGN_Z_OVERFLOW_VAL) return S32_MIN; val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); return val; } static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) { int ret; __le16 values[AXIS_XYZR_MAX]; s16 raw_x, raw_y, raw_z; u16 rhall; struct bmc150_magn_trim_regs tregs; ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, values, sizeof(values)); if (ret < 0) return ret; raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, &tregs, sizeof(tregs)); if (ret < 0) return ret; buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); return 0; } static int bmc150_magn_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_magn_data *data = iio_priv(indio_dev); int ret, tmp; s32 values[AXIS_XYZ_MAX]; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; mutex_lock(&data->mutex); ret = bmc150_magn_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = bmc150_magn_read_xyz(data, values); if (ret < 0) { bmc150_magn_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = values[chan->scan_index]; ret = bmc150_magn_set_power_state(data, false); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } mutex_unlock(&data->mutex); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: /* * The API/driver performs an off-chip temperature * compensation and outputs x/y/z magnetic field data in * 16 LSB/uT to the upper application layer. */ *val = 0; *val2 = 625; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: ret = bmc150_magn_get_odr(data, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->channel2) { case IIO_MOD_X: case IIO_MOD_Y: ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, &tmp); if (ret < 0) return ret; *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); return IIO_VAL_INT; case IIO_MOD_Z: ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, &tmp); if (ret < 0) return ret; *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int bmc150_magn_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val > data->max_odr) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_odr(data, val); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->channel2) { case IIO_MOD_X: case IIO_MOD_Y: if (val < 1 || val > 511) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_max_odr(data, val, 0, 0); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_REP_XY, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPXY_TO_REGVAL (val)); mutex_unlock(&data->mutex); return ret; case IIO_MOD_Z: if (val < 1 || val > 256) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_max_odr(data, 0, val, 0); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_REP_Z, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPZ_TO_REGVAL (val)); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } default: return -EINVAL; } } static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_magn_data *data = iio_priv(indio_dev); size_t len = 0; u8 i; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) break; len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", bmc150_magn_samp_freq_table[i].freq); } /* replace last space with a newline */ buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); static struct attribute *bmc150_magn_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_magn_attrs_group = { .attrs = bmc150_magn_attributes, }; #define BMC150_MAGN_CHANNEL(_axis) { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(II
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

# Copyright (c) 2017 Orange and others.
#
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
# http://www.apache.org/licenses/LICENSE-2.0

"""Unitary test for energy module."""
# pylint: disable=unused-argument
import logging
import unittest

import mock

from functest.energy.energy import EnergyRecorder
import functest.energy.energy as energy
from functest.utils.constants import CONST

CASE_NAME = "UNIT_TEST_CASE"
STEP_NAME = "UNIT_TEST_STEP"

PREVIOUS_SCENARIO = "previous_scenario"
PREVIOUS_STEP = "previous_step"


class MockHttpResponse(object):  # pylint: disable=too-few-public-methods
    """Mock response for Energy recorder API."""

    def __init__(self, text, status_code):
        """Create an instance of MockHttpResponse."""
        self.text = text
        self.status_code = status_code


API_OK = MockHttpResponse(
    '{"status": "OK"}',
    200
)
API_KO = MockHttpResponse(
    '{"message": "API-KO"}',
    500
)

RECORDER_OK = MockHttpResponse(
    '{"environment": "UNIT_TEST",'
    ' "step": "string",'
    ' "scenario": "' + CASE_NAME + '"}',
    200
)
RECORDER_KO = MockHttpResponse(
    '{"message": "An unhandled API exception occurred (MOCK)"}',
    500
)


def config_loader_mock(config_key):
    """Return mocked config values."""
    if config_key == "energy_recorder.api_url":
        return "http://pod-uri:8888"
    elif config_key == "energy_recorder.api_user":
        return "user"
    elif config_key == "energy_recorder.api_password":
        return "password"
    else:
        raise Exception("Config not mocked")


def config_loader_mock_no_creds(config_key):
    """Return mocked config values."""
    if config_key == "energy_recorder.api_url":
        return "http://pod-uri:8888"
    elif config_key == "energy_recorder.api_user":
        return ""
    elif config_key == "energy_recorder.api_password":
        return ""
    else:
        raise Exception("Config not mocked:" + config_key)


class