
Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 1 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

Calipso
Developer Guide

Project “Calipso” tries to illuminate complex virtual networking with real time operational state

visibility for large and highly distributed Virtual Infrastructure Management (VIM).

We believe that Stability is driven by accurate Visibility.

Calipso provides visible insights using smart discovery and virtual topological representation in

graphs, with monitoring per object in the graph inventory to reduce error vectors and

troubleshooting, maintenance cycles for VIM operators and administrators.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 2 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

Table of Contents
1 Project architecture ... 3

1.1 Application structure ..4

1.1.1 ‘API’ package .. 4

1.1.2 ‘Discover’ package .. 4

1.1.3 ‘Tests’ package .. 5

1.1.4 Other packages .. 5

2 Scanning Guide .. 6

2.1 Introduction to scanning ...6

2.1.1 Architecture overview ... 6

2.1.2 Scanning concepts ... 7

2.2 How to run scans ...8

2.2.1 Scan manager .. 9

2.3 Monitoring ..9

3 Events Guide .. 10

3.1 Introduction .. 10

3.1.1 Events .. 10

3.1.2 Event listeners ... 10

3.1.3 Event handlers ... 10

3.1.4 Event manager ... 10

3.1.5 Contribution .. 11

4 Contribution .. 12

4.1 Creating new object types .. 12

4.1.1 Creating new fetchers .. 12

4.1.2 The scanners configuration file structure .. 13

4.1.3 Updating scanners ... 15

4.1.4 Updating constants collection ... 16

4.1.5 Setting up monitoring .. 17

4.2 Creating new link types ... 18

4.2.1 Writing link finder classes... 18

4.2.2 Updating the link finders configuration file .. 19

4.2.3 Updating constants collection ... 19

4.2.4 Creating custom link finders configuration file .. 19

4.3 Creating new clique types .. 20

4.3.1 Designing new clique types... 20

4.3.2 Updating clique types collection ... 20

4.4 Creating new event handlers ... 20

4.4.1 Writing custom handler classes ... 21

4.4.2 Event handlers configuration file structure ... 22

4.5 Creating new event listeners .. 22

4.6 Metadata parsers ... 23

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 3 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

1 Project architecture
Calipso comprises two major parts: application and UI. We’ll focus on the former in this

developer guide.

Current project structure is as follows:
- root/

o app/

• api/
- responders/

o auth/
o resource/

- server.py

• config/
- events.json
- scanners.json

• discover/
- events/

- listeners/
- default_listener.py
- listener_base.py

- handlers/
- event_base.py
- event_*.py

- fetchers/
- aci/
- api/
- cli/
- db/

- event_manager.py
- scan.py
- scan_manager.py

• monitoring/
- checks/
- handlers/

- monitor.py
- setup/

- monitoring_setup_manager.py

• test/
- api/
- event_based_scan/
- fetch/
- scan/

• utils/
- ui/

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 4 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

1.1 Application structure

1.1.1 ‘API’ package
Calipso API is designed to be used by native and third-party applications that are planning

to use Calipso discovery application.

api/responders

This package contains all exposed API endpoint handlers:
auth package contains token management handlers,
resource package contains resource handlers.

server.py

API server startup script. In order for it to work correctly, connection arguments for a
Mongo database used by a Calipso application instance are required:

 -m [MONGO_CONFIG], --mongo_config [MONGO_CONFIG]
 name of config file with mongo access details
 --ldap_config [LDAP_CONFIG]
 name of the config file with ldap server config
 details
 -l [LOGLEVEL], --loglevel [LOGLEVEL]
 logging level (default: 'INFO')
 -b [BIND], --bind [BIND]
 binding address of the API server (default
 127.0.0.1:8000)
 -y [INVENTORY], --inventory [INVENTORY]
 name of inventory collection (default: 'inventory')
 -t [TOKEN_LIFETIME], --token-lifetime [TOKEN_LIFETIME]
 lifetime of the token

For detailed reference and endpoints guide, see the API Guide document.

1.1.2 ‘Discover’ package
‘Discover’ package contains the core Calipso functionality which involves:
- scanning a network topology using a defined suite of scanners (see Scanning concepts,

Scanners configuration file structure) that use fetchers to get all needed data on objects
of the topology;

- tracking live events that modifies the topology in any way (by adding new object,
updating existing or deleting them) using a suite of event handlers and event listeners;

- managing the aforementioned suites using specialized manager scripts
(scan_manager.py and event_manager.py)

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 5 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

1.1.3 ‘Tests’ package
‘Tests’ package contains unit tests for main Calipso components: API, event handlers,

fetchers, scanners and utils.

1.1.4 Other packages
Install

Installation and deployment scripts (with initial data for Calipso database).
Monitoring
Monitoring configurations, checks and handlers (see Monitoring section and Monitoring

Guide document).
Utils

Utility modules for app-wide use (inventory manager, mongo access, loggers, etc.).

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 6 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

2 Scanning Guide

2.1 Introduction to scanning

2.1.1 Architecture overview
Calipso backend will scan any OpenStack environment to discover the objects that it is

made of, and place the objects it discovered in a MongoDB database.
Following discovery of objects, Calipso will:
Find what links exist between these objects, and save these links to MongoDB as well.

For example, it will create a pnic-network link from a pNIC (physical NIC) and the network it is
connected to.

Based on user definitions, it will create a 'clique' for each object using the links it
previously found. These cliques are later used to present graphs for objects being viewed in the
Calipso UI. This is not a clique by graph theory definition, but more like the social definition of
clique: a graph of related, interconnected nodes.

OpenStack Scanning is done using the following methods, in order of preference:

1. OpenStack API
2. MySQL DB - fetch any extra detail we can from the infrastructure MySQL DB

used by OpenStack
3. CLI - connect by SSH to the hosts in the OpenStack environment to run commands,

e.g. ifconfig, that will provide the most in-depth details.

Note: 'environment' in Calipso means a single deployment of OpenStack, possibly

containing multiple tenants (projects), hosts and instances (VMs). A single Calipso instance can
handle multiple OpenStack environments.
However, we expect that typically Calipso will reside inside an OpenStack control node and will
handle just that node's OpenStack environment.

Environment

The Calipso scan script, written in Python, is called scan.py.
It uses Python 3, along with the following libraries:

• pymongo - for MongoDB access

• mysql-connector - For MySQL DB access

• paramiko - for SSH access

• requests - For handling HTTP requests and responses to the OpenStack API

• xmltodict - for handling XML output of CLI commands

• cryptography - used by Paramiko

See Calipso installation guide for environment setup instructions.

Configuration

The configuration for accessing the OpenStack environment, by API, DB or SSH, is saved
in the Calipso MongoDB “environments_config” collection.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 7 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

Calipso can work with a remote MongoDB instance, the details of which are read from a
configuration file (default: /etc/calipso/mongo.conf).

The first column is the configuration key while the second is the configuration value, in the
case the value is the server host name or IP address.
Other possible keys for MongoDB access:

• port: IP port number
• Other parameters for the PyMongo MongoClient class constructor

Alternate file location can be specified using the CLI -m parameter.

2.1.2 Scanning concepts

DB Schema
Objects are stored in the inventory collection, named “inventory” by default, along with

the accompanying collections, named by default: "links", "cliques", "clique_types" and

"clique_constraints". For development, separate sets of collections can be defined per
environment (collection names are created by appending the default collection name to the
alternative inventory collection name).

The inventory, links and cliques collections are all designed to work with a multi-
environment scenario, so documents are marked with an "environment" attribute.

The clique_types collection allows Calipso users (typically administrators) to define how
the "clique" graphs are to be defined.

It defines a set of link types to be traversed when an object such as an instance is clicked in
the UI (therefore referred to as the focal point). See "Clique Scanning" below. This definition can
differ between environments.

Example: for focal point type "instance", the link types are often set to

• instance-vnic

• vnic-vconnector

• vconnector-vedge

• vedge-pnic

• pnic-network

The clique_constraints collection defines a constraint on links traversed for a specific

clique when starting from a given focal point.
For example: instance cliques are constrained to a specific network. If we wouldn't have this
constraint, the resulting graph would stretch to include objects from neighboring networks that
are not really related to the instance.

Hierarchy of Scanning

The initial scanning is done hierarchically, starting from the environment level and
discovering lower levels in turn.

Examples:

• Under environment we scan for regions and projects (tenants).

• Under availability zone we have hosts, and under hosts we have instances and host
services

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 8 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

The actual scanning order is not always same as the logical hierarchical order of objects, to

improve scanning performance.
Some objects are referenced multiple times in the hierarchy. For example, hosts are always

in an availability zone, but can also be part of a host aggregate. Such extra references are saved
as references to the main object.

Clique Scanning

For creating cliques based on the discovered objects and links, clique types need to be
defined for the given environment.
A clique type specifies the list of link types used in building a clique for a specific focal point
object type.

For example, it can define that for instance objects we want to have the following link types:

• instance-vnic

• vnic-vconnector

• vconnector-vedge

• vedge-pnic

• pnic-network

As in many cases the same clique types are used, default clique types will be provided with

a new Calipso deployment.

Clique creation algorithm

• For each clique type CT:

• For each focal point object F of the type specified as the clique type focal point
type:

• Create a new clique C

• Add F to the list of objects included in the clique

• For each link type X-Y of the link types in CT:

• Find all the source objects of type x that are already included in
the clique

• For each such source object S:

• for all links L of type X-Y that have S as their source

• Add the object T of type Y that is the target in
L to the list of objects included in the clique

• Add L to the list of links in the clique C

2.2 How to run scans
For running environment scans Calipso uses a specialized daemon script called scan

manager. If Calipso application is deployed in docker containers, scan manager will run inside
the calipso-scan container.

Scan manager uses MongoDB connection to fetch requests for environment scans and
execute them by running a scan script. It also performs extra checks and procedures connected to

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 9 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

scan failure/completion, such as marking environment as scanned and reporting errors (see
details).

Scan script workflow:
1. Loads specific scanners definitions from a predefined metadata file (which can be

extended in order to support scanning of new object types).
2. Runs the root scanner and then children scanners recursively (see Hierarchy of

scanning)
a. Scanners do all necessary work to insert objects in inventory.

3. Finalizes the scan and publishes successful scan completion.

2.2.1 Scan manager
Scan manager is a script which purpose is to manage the full lifecycle of scans requested

through API. It runs indefinitely while:
1. Polling the database (scans and scheduled_scans collections) for new and scheduled

scan requests;
2. Parsing their configurations;
3. Running the scans;
4. Logging the results.

Scan manager can be run in a separate container provided that it has connection to the

database and the topology source system.

2.3 Monitoring
Monitoring Subsystem Overview
Calipso monitoring uses Sensu to remotely track actual state of hosts.
A Sensu server is installed as a Docker image along with the other Calipso components.

Remote hosts send check events to the Sensu server.
We use a filtering of events such that the first occurrence of a check is always used, after

that cases where status is unchanged are ignored.
When handling a check event, the Calipso Sensu handlers will find the matching Calipso

object, and update its status.
We also keep the timestamp of the last status update, along with the full check output.
Setup of checks and handlers code on the server and the remote hosts can be done by

Calipso. It is also possible to have this done using another tool, e.g. Ansible or Puppet.

More info is available in Monitoring Guide document.

Package Structure
Monitoring package is divided like this:
1. Checks: these are the actual check scripts that will be run on the hosts;
2. Handlers: the code that does handling of check events;
3. Setup: code for setting up handlers and checks.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 10 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

3 Events Guide

3.1 Introduction

3.1.1 Events
Events in general sense are any changes to the monitored topology objects that are

trackable by Calipso. We currently support subscription to Neutron notification queues for
several OpenStack distributions as a source of events.

The two core concepts of working with events are listening to events and event handling,
so the main module groups in play are the event listener and event handlers.

3.1.2 Event listeners
An event listener is a module that handles connection to the event source, listening to the

new events and routing them to respective event handlers.
An event listener class should be designed to run indefinitely in foreground or background

(daemon) while maintaining a connection to the source of events (generally a message queue like
RabbitMQ or Apache Kafka). Each incoming event is examined and, if it has the correct format,
is routed to the corresponding event handler class. The routing can be accomplished through a
dedicated event router class using a metadata file and a metadata parser (see Metadata parsers).

3.1.3 Event handlers
An event handler is a specific class that parses the incoming event payload and performs a

certain CUD (Create/Update/Delete) operation on zero or more database objects. Event handler
should be independent of the event listener implementation.

3.1.4 Event manager
Event manager is a script which purpose is to manage event listeners. It runs indefinitely

and performs the following operations:
1. Starts a process for each valid entry in environments_config collection that is scanned

(scanned == true) and has the listen flag set to true;
2. Checks the operational statuses of event listeners and updating them in

environments_config collection;
3. Stops the event listeners that no longer qualify for listening (see step 1);
4. Restarts the event listeners that quit unexpectedly;
5. Repeats steps 1-5

Event manager can be run in a separate container provided that it has connection to the

database and to all events source systems that event listeners use.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 11 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

3.1.5 Contribution
You can contribute to Calipso events system in several ways:
- create custom event handlers for an existing listener;
- create custom event listeners and reuse existing handlers;
- create custom event handlers and listeners.

See Creating new event handlers and Creating new event listeners for the respective

guides.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 12 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4 Contribution
This section covers the designed approach to contribution to Calipso.

The main scenario of contribution consists of introducing a new object type to the discovery

engine, defining links that connect this new object to existing ones, and describing a clique (or
cliques) that makes use of the object and its links. Below we describe how this scenario should be
implemented, step-by-step.

Note: Before writing any new code, you need to create your own environment using UI

(see User Guide document) or API (see the API guide doc). Creating an entry directly in
“environments_config” collection is not recommended.

4.1 Creating new object types
Before you proceed with creation of new object type, you need to make sure the following

requirements are met:
- New object type has a unique name and purpose
- New object type has an existing parent object type

First of all, you need to create a fetcher that will take care of getting info on objects of the

new type, processing it and adding new entries in Calipso database.

4.1.1 Creating new fetchers
A fetcher is a common name for a class that handles fetching of all objects of a certain type

that have a common parent object. The source of this data may be already implemented in
Calipso (like OpenStack API, CLI and DB sources) or you may create one yourself.

Common fetchers

Fetchers package structure should adhere to the following pattern (where %source_name%
is a short prefix like api, cli, db):

- app
- discover

- fetchers
- %source_name%

- %source_name%_%fetcher_name%.py

If you reuse the existing data source, your new fetcher should subclass the class located in

%source_name%_access module inside the %source_name% directory.
Fetcher class name should repeat the module name, except in CamelCase instead of

snake_case.
Example: if you are adding a new cli fetcher, you should subclass CliAccess class found by

app/discover/fetchers/cli/cli_access.py path. If the module is named cli_fetch_new_objects.py,
fetcher class should be named CliFetchNewObjects.

If you are creating a fetcher that uses new data source, you may consider adding an

“access” class for this data source to store convenience methods. In this case, the “access” class

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 13 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

should subclass the base Fetcher class (found in app/discover/fetcher.py) and the fetcher class
should subclass the “access” class.

All business logic of a fetcher should be defined inside the overridden method from base

Fetcher class get(self, parent_id). You should use the second argument that is automatically
passed by parent scanner to get the parent entity from database and any data you may need. This
method has to return a list of new objects (dicts) that need to be inserted in Calipso database.
Their parent object should be passed along other fields (see example).

Note: types of returned objects should match the one their fetcher is designed for.

Example:

app/discover/fetchers/cli/cli_fetch_new_objects.py

from discover.fetchers.cli.cli_access import CliAccess
from utils.inventory_mgr import InventoryMgr

class CliFetchNewObjects(CliAccess):

 def __init__(self):
 super().__init__()
 self.inv = InventoryMgr()

 def get(self, parent_id):
 parent = self.inv.get_by_id(self.env, parent_id)
 # do something
 objects = [{"type": "new_type", "id": "1234", "parent": parent},
 {"type": "new_type", "id": "2345", "parent": parent}]
 return objects

This is an example of a fetcher that deals with the objects of type “new_type”. It uses the
parent id to fetch the parent object, then performs some operations in order to fetch the new
objects and ultimately returns the objects list, at which point it has gathered all required
information.

Folder fetcher

A special type of fetchers is the folder fetcher. It serves as a dummy object used to
aggregate objects in a specific point in objects hierarchy. If you would like to logically separate
children objects from parent, you may use folder fetcher found at
app/discover/fetchers/folder_fetcher.py.

Usage is described here.

4.1.2 The scanners configuration file structure
Scanners.json (full path app/config/scanners.json) is an essential configuration file that

defines scanners hierarchy. It has a forest structure, meaning that it is a set of trees, where each
tree has a root scanner, potentially many levels of children scanners and pointers from parent
scanners to children scanners. Scanning hierarchy is described here.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 14 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

A scanner is essentially a list of fetchers with configuration (we’ll call those Fetch types).
Fetch types can be Simple and Folder, described below.

Simple fetch type

A simple fetch type looks like this:
{
 "type": "project",
 "fetcher": "ApiFetchProjects",
 "object_id_to_use_in_child": "name",
 "environment_condition": {
 "mechanism_drivers": "VPP"
 },
 "children_scanner": "ScanProject"
}

Supported fields include:
- “fetcher” – class name of fetcher that the scanner uses;
- “type” – object type that the fetcher works with;
- “children_scanner” – (optional) full name of a scanner that should run after current

one finishes;
- “environment_condition” – (optional) specific constraints that should be checked

against the environment in environments_config collection before execution;
- “object_id_to_use_in_child” – (optional) which parent field should be passed as parent

id to the fetcher (default: “id”).

Folder fetch type
Folder fetch types deal with folder fetchers (described here) and have a slightly different

structure:

{
 "type": "aggregates_folder",
 "fetcher": {
 "folder": true,
 "types_name": "aggregates",
 "parent_type": "region"
 },
 "object_id_to_use_in_child": "name",
 "environment_condition": {
 "mechanism_drivers": "VPP"
 },
 "children_scanner": "ScanAggregatesRoot"
}

The only difference is that “fetcher” field is now a dictionary with the following fields:
- “folder” – should always be true;
- “types_name” – type name in plural (with added ‘s’) of objects that serve as folder’s

children
- “parent_type” – folder’s parent type (basically the parent type of folder’s objects).

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 15 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.1.3 Updating scanners
After creating a new fetcher, you should integrate it into scanners hierarchy. There are

several possible courses of action:
Add new scanner as a child of an existing one
If the parent type of your newly added object type already has a scanner, you can add your

new scanner as a child of an existing one. There are two ways to do that:
1. Add new scanner as a “children_scanner” field to parent scanner

Example
Before:

"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 }
],

After:

"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 "children_scanner": "NewTypeScanner"
 }
],
"NewTypeScanner": [
 {
 "type": "new_type",
 "fetcher": "CliFetchNewType"
 }
]

2. Add new fetch type to parent scanner (in case if children scanner already exists)

Example

Before:
"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 "children_scanner": "ScanHostPnic"
 }
],

After:
"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 "children_scanner": "ScanHostPnic"
 },
 {
 "type": "new_type",
 "fetcher": "CliFetchNewType"
 }
],

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 16 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

Add new scanner and set an existing one as a child

 Example

Before:
"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 "children_scanner": "ScanHostPnic"
 }
],

After:
"NewTypeScanner": [
 {
 "type": "new_type",
 "fetcher": "CliFetchNewType",
 "children_scanner": "ScanHost"
 }
]

"ScanHost": [
 {
 "type": "host",
 "fetcher": "ApiFetchProjectHosts",
 "children_scanner": "ScanHostPnic"
 }
],

Other cases

You may choose to combine approaches or use none of them and create an isolated scanner
if needed.

4.1.4 Updating constants collection
Before testing your new scanner and fetcher you need to add the newly created object type

to “constants” collection in Calipso database:
1. constants.object_types document

Append a {“value”: “new_type”, “label”: “new_type”} object to data list.
2. constants.scan_object_types document

Append a {“value”: “new_type”, “label”: “new_type”} object to data list.
3. constants.object_types_for_links document

If you’re planning to build links using this object type (you probably are), append a
{“value”: “new_type”, “label”: “new_type”} object to data list.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 17 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.1.5 Setting up monitoring
In order to setup monitoring for the new object type you have defined, you’ll need to add a

Sensu check:
1. Add a check script in app/monitoring/checks:

a. Checks should return the following values:
0: OK
1: Warning
2: Error

b. Checks can print the underlying query results to stdout. Do so within reason, as
this output is later stored in the DB, so avoid giving too much output;

c. Test your script on a remote host:
i. Write it in /etc/sensu/plugins directory;

ii. Update the Sensu configuration on the remote host to run this check;
iii. Add the check in the “checks” section of /etc/sensu/conf.d/client.json;
iv. The name under which you save the check will be used by the handler to

determine the DB object that it relates to;
v. Restart the client with the command: sudo service sensu-client restart;

vi. Check the client log file to see the check is run and produces the
expected output (in /var/log/sensu directory).

d. Add the script to the source directory (app/monitoring/checks).
2. Add a handler in app/monitoring/handlers:

a. If you use a standard check naming scheme and check an object, the
BasicCheckHandler can take care of this, but add the object type in
basic_handling_types list in get_handler();

b. If you have a more complex naming scheme, override
MonitoringCheckHandler. See HandleOtep for example.

3. If you deploy monitoring using Calipso:
a. Add the check in the monitoring_config_templates collection.

Check Naming
The check name should start with the type of the related object, followed by an underscore

(“_”). For example, the name for a check related to an OTEP (type “otep”) will start with
“otep_“. It should then be followed by the object ID.

For checks related to links, the check name will have this format: link_<link

type>_<from_id>_<to_id>

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 18 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.2 Creating new link types
After you’ve added a new object type you may consider adding new link types to connect

objects of new type to existing objects in topology. Your new object type may serve as a source
and/or target type for the new link type.

The process of new link type creation includes several steps:
1. Write a link finder class;
2. Add the link finder class to the link finders configuration file;
3. Update “constants” collection with the new link types.

4.2.1 Writing link finder classes
A new link finder class should:
1. Subclass app.discover.link_finders.FindLinks class;
2. Be located in the app.discover.link_finders package;
3. Define an instance method called add_links(self) with no additional arguments. This

method is the only entry point for link finder classes.

FindLinks class provides access to inventory manager to its subclasses which they should
use to their advantage. It also provides a convenience method create_links(self, …) for saving
links to database. It is reasonable to call this method at the end of add_links method.

You may opt to add more than one link type at a time in a single link finder.

Example
from discover.find_links import FindLinks

class FindLinksForNewType(FindLinks):

 def add_links(self):
 new_objects = self.inv.find_items({"environment": self.get_env(),
 "type": "new_type"})

 for new_object in new_objects:
 old_object = self.inv.get_by_id(environment=self.get_env(),
 item_id=new_object["old_object_id"])

 link_type = "old_type-new_type"
 link_name = "{}-{}".format(old_object["name"], new_object["name"])
 state = "up" # TBD
 link_weight = 0 # TBD

 self.create_link(env=self.get_env(),
 source=old_object["_id"],
 source_id=old_object["id"],
 target=new_object["_id"],
 target_id=new_object["id"],
 link_type=link_type,
 link_name=link_name,
 state=state,
 link_weight=link_weight)

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 19 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.2.2 Updating the link finders configuration file
Default link finders configuration file can be found at /app/config/link_finders.json and has

the following structure:
{
 "finders_package": "discover.link_finders",
 "base_finder": "FindLinks",
 "link_finders": [
 "FindLinksForInstanceVnics",
 "FindLinksForOteps",
 "FindLinksForPnics",
 "FindLinksForVconnectors",
 "FindLinksForVedges",
 "FindLinksForVserviceVnics"
]
}

File contents:
- finders_package – python path to the package that contains link finders (relative to

$PYTHONPATH environment variable);
- base_finder – base link finder class name;
- link_finders – class names of actual link finders.

If your new fetcher meets the requirements described in Writing link finder classes section,

you can append its name to the “link_finders” list in link_finders.json file.

4.2.3 Updating constants collection
Before testing your new links finder, you need to add the newly created link types to

“constants” collection in Calipso database:
1. constants.link_types document

Append a {“value”: “source_type-target_type”, “label”: “source_type-target_type”}
object to data list for each new link type.

4.2.4 Creating custom link finders configuration file
If you consider writing a custom list finders configuration file, you should also follow the

guidelines from 4.2.1-4.2.3 while designing link finder classes and including them in the new
link finders source file.

The general approach is the following:
1. Custom configuration file should have the same key structure with the basic one;
2. You should create a base_finder class that subclasses the basic FindLinks class (see

Writing link finder classes);
3. Your link finder classes should be located in the same package with your base_finder

class;
4. Your link finder classes should subclass your base_finder class and override the

add_links(self) method.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 20 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.3 Creating new clique types
Two steps in creating new clique types and including them in clique finder are:
1. Designing new clique types
2. Updating clique types collection

4.3.1 Designing new clique types
A clique type is basically a list of links that will be traversed during clique scans (see

Clique creation algorithm). The process of coming up with clique types involves general
networking concepts knowledge as well as expertise in monitored system details (e.g. OpenStack
distribution specifics). In a nutshell, it is not a trivial process, so the clique design should be
considered carefully.

The predefined clique types (in clique_types collection) may give you some idea about the
rationale behind clique design.

4.3.2 Updating clique types collection
After designing the new clique type, you need to update the clique_types collection in

order for the clique finder to use it. For this purpose, you should add a document of the following
structure:

{

 "environment": "ANY",

 "link_types": [

 "instance-vnic",

 "vnic-vconnector",

 "vconnector-vedge",

 "vedge-otep",

 "otep-vconnector",

 "vconnector-host_pnic",

 "host_pnic-network"

],

 "name": "instance",

 "focal_point_type": "instance"

}

Document fields are:
- environment – can either hold the environment name, for which the new clique type is

designed, or “ANY” if the new clique type should be added to all environments;
- name – display name for the new clique type;
- focal_point_type – the aggregate object type for the new clique type to use as a starting

point;
- link_types – a list of links that constitute the new clique type.

4.4 Creating new event handlers
There are three steps to creating a new event handler:
1. Determining event types that will be handled by the new handler;
2. Writing the new handler module and class;
3. Adding the (event type -> handler) mapping to the event handlers configuration file.

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 21 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

4.4.1 Writing custom handler classes
Each event handler should adhere to the following design:
1. Event handler class should subclass

the app.discover.events.event_base.EventBase class;
2. Event handler class should override handle method of EventBase. Business logic of the

event handler should be placed inside the handle method;
a. Handle method accepts two arguments: environment name (str) and notification

contents (dict). No other event data will be provided to the method;
b. Handle method returns an EventResult object, which accepts the following

arguments in its constructor:
i. result (mandatory) - determines whether the event handling was

successful;
ii. retry (optional) - determines whether the message should be put back in

the queue in order to be processed later. This argument is checked only
if result was set to False;

iii. message (optional) - (Currently unused) a string comment on handling
status;

iv. related_object (optional) – id of the object related to the handled event;
v. display_context (optional) – (Calipso UI requirement).

3. Module containing event handler class should have the same name as the relevant
handler class except translated from UpperCamelCase to snake_case.

Example:

app/discover/events/event_new_object_add.py
from discover.events.event_base import EventBase, EventResult

class EventNewObjectAdd(EventBase):
 def handle(self, env: str, notification: dict) -> EventResult:
 obj_id = notification['payload']['new_object']['id']
 obj = {
 'id': obj_id,
 'type': 'new_object'
 }
 self.inv.set(obj)
 return EventResult(result=True)

Modifications in events.json:

<...>
"event_handlers": {
 <...>
 "new_object.create": "EventNewObjectAdd",
 <...>
}
<...>

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 22 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

After these changes are implemented, any event of type new_object.create will be

consumed by the event listener and the payload will be passed to EventNewObjectAdd handler
which will insert a new document in the database.

4.4.2 Event handlers configuration file structure
Events.json (full path app/config/events.json) is a configuration file that contains

information about events and event handlers, including:
- Event subscription details (queues and exchanges for Neutron notifications);
- Location of event handlers package;
- Mappings between event types and respective event handlers.

The structure of events.json is as following:
{
 "handlers_package": "discover.events",
 "queues": [
 {
 "queue": "notifications.nova",
 "exchange": "nova"
 },
 <…>
],
 "event_handlers": {
 "compute.instance.create.end": "EventInstanceAdd",
 "compute.instance.update": "EventInstanceUpdate",
 "compute.instance.delete.end": "EventInstanceDelete",
 "network.create.end": "EventNetworkAdd",
 <…>
 }
}

The root object contains the following fields:
- handlers_package - python path to the package that contains event handlers (relative

to $PYTHONPATH environment variable)
- queues – RabbitMQ queues and exchanges to consume messages from (for Neutron

notifications case)
- event_handlers – mappings of event types to the respective handlers. The structure

suggests that any event can have only one handler.

In order to add a new event handler to the configuration file, you should add another
mapping to the event_handlers object, where key is the event type being handled and value is the
handler class name (module name will be determined automatically).

If your event is being published to a queue and/or exchange that the listener is not
subscribed to, you should add another entry to the queues list.

4.5 Creating new event listeners
At the moment, the only guideline for creation of new event listeners is that they should

subclass the ListenerBase class (full path app/discover/events/listeners/listener_base.py) and
override the listen(self) method that listens to incoming events indefinitely (until terminated by a
signal).

Date printed: 10/18/2017 calipso.io project

Aug 2017 Cisco for OPNFV 23 Public version

A printed copy of this document is considered uncontrolled. Refer to the online version for the controlled revision.

In future versions, a comprehensive guide to listeners structure is planned.

4.6 Metadata parsers
Metadata parsers are specialized classes that are designed to verify metadata files (found in

app/config directory), use data from them to load instances of implementation classes (e.g.
scanners, event handlers, link finders) in memory, and supply them by request. Scanners and link
finders configuration files are used in scanner, event handlers configuration file – in event
listener.

In order to create a new metadata parser, you should consider subclassing MetadataParser
class (found in app/utils/metadata_parser.py). MetadataParser supports parsing and validating
of json files out of the box. Entry point for the class is the parse_metadata_file method, which
requires the abstract get_required_fields method to be overridden in subclasses. This method
should return a list of keys that the metadata file is required to contain.

For different levels of customization you may consider:
1. Overriding validate_metadata method to provide more precise validation of metadata;
2. Overriding parse_metadata_file to provide custom metadata handling required by your

use case.

