
Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  1 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

Calipso.io  
Administration Guide 

 

 

 

 

Project “Calipso” tries to illuminate complex virtual networking with real time operational state 

visibility for large and highly distributed Virtual Infrastructure Management (VIM).  

Calipso provides visible insights using smart discovery and virtual topological representation in 

graphs, with monitoring per object in the graph inventory to reduce error vectors and 

troubleshooting, maintenance cycles for VIM operators and administrators. 

Calipso model, described in this document, was built for multi-environment and many VIM 

variances, the model was tested successfully (as of Aug 27th) against 60 different VIM variances 

(Distributions, Versions, Networking Drivers and Types). 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  2 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

 

 

Table of Contents 
Calipso.io  Administration Guide ................................................................................................... 1 

1 Environments config ................................................................................................................ 3 

2 UI overview .............................................................................................................................. 5 

2.1 User management .............................................................................................................. 7 

2.2 Logging in and out ............................................................................................................. 8 

2.3 Messaging check................................................................................................................ 9 

2.4 Adding a new environment................................................................................................ 9 

3 Preparing an environment for scanning ................................................................................. 10 

3.1 Where to deploy Calipso application ............................................................................... 10 

3.2 Environment setup ........................................................................................................... 10 

3.3 Filling the environment config data................................................................................. 10 

3.4 Testing the connections ................................................................................................... 11 

4 Links and Cliques ................................................................................................................... 12 

4.1 Adding environment clique_types ................................................................................... 13 

5 Environment scanning ............................................................................................................ 13 

5.1 UI scanning request ......................................................................................................... 14 

5.2 UI scan schedule request ................................................................................................. 15 

5.3 API scanning request ....................................................................................................... 16 

5.4 CLI scanning in the calipso-scan container ..................................................................... 17 

5.4.1 Clique Scanning ........................................................................................................ 18 

5.4.2 Viewing results ......................................................................................................... 19 

6 Editing or deleting environments ........................................................................................... 19 

7 Event-based scanning ............................................................................................................. 20 

7.1 Enabling event-based scanning ....................................................................................... 20 

7.2 Event-based handling details ........................................................................................... 21 

8 ACI scanning .......................................................................................................................... 33 

9 Monitoring enablement .......................................................................................................... 35 

 

  



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  3 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

1 Environments config 
Environment is defined as a certain type of Virtual Infrastructure facility the runs 

under a single unified Management (like an OpenStack facility). 

Everything in Calipso application rely on environments config, this is maintained in 

the “environments_config” collection in the mongo Calipso DB. 

Environment configs are pushed down to Calipso DB either through UI or API (and 

only in OPNFV case Calipso provides an automated program to build all needed 

environments_config parameters for an ‘Apex’ distribution automatically). 

When scanning and discovering items Calipso uses this configuration document for 

successful scanning results, here is an example of an environment config document: 

{  

    "name": "DEMO-ENVIRONMENT-SCHEME",  

    "enable_monitoring": true,  

    "last_scanned": "filled-by-scanning",  

    "app_path": "/home/scan/calipso_prod/app",  

    "type": "environment",  

    "distribution": "Mirantis",  

    "distribution_version": "8.0”,  

    "mechanism_drivers": ["OVS”],  

    "type_drivers": "vxlan" 

    "operational": "stopped",  

    "listen": true,  

    "scanned": false,  

    "configuration": [ 

        { 

            "name": "OpenStack",  

            "port":”5000”,  

            "user": "adminuser",  

            "pwd": "dummy_pwd",  

            "host": "10.0.0.1",  

            "admin_token": "dummy_token" 

        },  

        { 

            "name": "mysql",  

            "pwd": "dummy_pwd",  

            "host": "10.0.0.1",  

            "port": “3307”,  

            "user": "mysqluser" 

        },  

        { 

            "name": "CLI",  

            "user": "sshuser",  

            "host": "10.0.0.1",  

            "pwd": "dummy_pwd" 

        },  

        { 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  4 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

            "name": "AMQP",  

            "pwd": "dummy_pwd",  

            "host": "10.0.0.1",  

            "port": “5673”,  

            "user": "rabbitmquser" 

        },  

        { 

            "name": "Monitoring",  

            "ssh_user": "root",  

            "server_ip": "10.0.0.1",  

            "ssh_password": "dummy_pwd",  

            "rabbitmq_pass": "dummy_pwd",  

            "rabbitmq_user": "sensu",  

            "rabbitmq_port": “5671”,  

            "provision": "None",  

            "env_type": "production",  

            "ssh_port": “20022”,  

            "config_folder": "/local_dir/sensu_config",  

            "server_name": "sensu_server",  

            "type": "Sensu",  

            "api_port": NumberInt(4567) 

        },  

        { 

            "name": "ACI",  

            "user": "admin",  

            "host": "10.1.1.104",  

            "pwd": "dummy_pwd" 

        } 

    ],  

    "user": "wNLeBJxNDyw8G7Ssg",  

    "auth": { 

        "view-env": [ 

            "wNLeBJxNDyw8G7Ssg" 

        ],  

        "edit-env": [ 

            "wNLeBJxNDyw8G7Ssg" 

        ] 

    },  

} 
 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  5 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

Here is a brief explanation of the purpose of major keys in this environment 

configuration doc: 

Distribution: captures type of VIM, used for scanning of objects, links and cliques. 

Distribution_version: captures version of VIM distribution, used for scanning of 

objects, links and cliques. 

Mechanism_driver: captures virtual switch type used by the VIM, used for scanning 

of objects, links and cliques. 

Type_driver: captures virtual switch tunneling type used by the switch, used for 

scanning of objects, links and cliques. 

Listen: defines whether or not to use Calipso listener against the VIM BUS for 

updating inventory in real-time from VIM events. 

Scanned: defines whether or not Calipso ran a full and a successful scan against this 

environment. 

Last_scanned: end time of last scan. 

Operational: defines whether or not VIM environment endpoints are up and running. 

Enable_monitoring: defines whether or not Calipso should deploy monitoring of the 

inventory objects running inside all environment hosts. 

Configuration-OpenStack: defines credentials for OpenStack API endpoints access. 

Configuration-mysql: defines credentials for OpenStack DB access. 

Configuration-CLI: defines credentials for servers CLI access.  

Configuration-AMQP: defines credentials for OpenStack BUS access. 

Configuration-Monitoring: defines credentials and setup for Calipso sensu server 

(see monitoring-guide for details). 

Configuration-ACI: defines credentials for ACI switched management API, if exists. 

User and auth: used for UI authorizations to view and edit this environment.  

App-path: defines the root directory of the scanning application. 

  

* This guide will help you understand how-to add new environment through the 

provided Calispo UI module and then how-to use this environment (and potentially 

many others) for scanning and real-time inventories collection. 

2 UI overview  
Cloud administrator can use the Calipso UI for he’s daily tasks. Once Calipso 

containers are running (see quickstart-guide) the UI will be available at: 

http://server-ip:80 , default login credentials: admin/123456. 

Before logging in, while at the main landing page, a generic information is provided. 

Post login, at the main dashboard you can click on “Get started” and view a short 

guide for using some of the basic UI functions, available at: server-ip/getstarted. 

 

The main areas of interest are shown in the following screenshot:  

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  6 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

Main areas on UI: 

 

 
 

Main areas details: 

 

Navigation Tree(1): Hierarchy searching through the inventory using objects and 

parents details, to lookup a focal point of interest for graphing or data gathering. 

 

Main functions (2): Jumping between highest level dashboard (all environments), 

specific environment and some generic help is provided in this area. 

 

Environment Summary (3): The central area where the data is exposed, either 

through graph or through widget-attribute-listing. 

 

Search engine (4): Finding interesting focal points faster through basic object naming 

lookups, then clicking on results to get transferred directly to that specific object 

dashboard. Searches are conducted across all environments. 

 

More settings (5): In this area the main collections of data are exposed, like scans, 

schedules, messaging, clique_types, link_types and others. 

 

Graph or Data toggle (6): When focusing on a certain focal point, this button allows 

changing from a graph-view to simple data-view per request, if no graph is available 

for a certain object the data-view is used by default, if information is missing try this 

button first to make sure the correct view is chosen. 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  7 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

2.1 User management 
The first place an administrator might use is the user’s configurations, this is where a 

basic RBAC is provided for authorizing access to the UI functions. Use the ‘settings’ 

button and choose ‘users’ to access: 

 

 
 

Editing the admin user password is allowed here: 

 

 
 

Note:  

The ‘admin’ user is allowed all functions on all environments, you shouldn’t change 

this behavior and you should never delete this user, or you’ll need re-install Calipso. 

 

Adding new user is provided when clicking the “Create new user” option: 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  8 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

 

 

 

Creating a new user: 

 
Before environments are configured there is not a lot of options here, once 

environments are defined (one or more), users can be allowed to edit or view-only 

those environments. 

 

2.2  Logging in and out 
To logout and re-login with different user credentials you can click the username 

option and choose to sign out: 

 

 

 
 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  9 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

2.3 Messaging check 
When calispo-scan and calipso-listen containers are running, they provide basic 

messages on their processes status, this should be exposed thorough the messaging 

system up to the UI, to validate this choose ‘messages’ from the settings button: 

 
 

 

2.4 Adding a new environment 
As explained above, environment configuration is the pre requisite for any Calipso data 

gathering, goto “My Environments” -> and “Add new Environment” to start building 

the environment configuration scheme: 

 
Note: this is automated with OPNFV apex distro, where Calipso auto-discovers all credentials  



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  10 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

3 Preparing an environment for scanning 
Some preparation is needed for allowing Calipso to successfully gather data from the 

underlying systems running in the virtual infrastructure environment. This chapter 

explain the basic requirements and provide recommendations.  

 

3.1 Where to deploy Calipso application 
Calipso application replaces the manual discovery steps typically done by the 

administrator on every maintenance and troubleshooting cycles, It needs to have the 

administrators privileges and is most accurate when placed on one of the controllers or 

a“jump server” deployed as part of the cloud virtual infrastructure, Calipso calls this 

server a “Master host”. 

Consider Calipso as yet another cloud infrastructure module, similar to neutron, nova. 

Per supported distributions we recommend installing the Calipso application at: 

1. Mirantis: on the ‘Fuel’ or ‘MCP’ server. 

2. RDO/Packstack: where the ansible playbooks are deployed.  

3. Canonical/Ubuntu: on the juju server. 

4. Triple-O/Apex: on the jump host server. 

3.2 Environment setup 
The following steps should be taken to enable Calispo’s scanner and listener to 

connect to the environment controllers and compute hosts: 

1. OpenStack API endpoints : Remote access user accessible from the master host 

with the required credentials and allows typical ports: 5000, 35357,  8777, 8773, 

8774, 8775, 9696 

2. OpenStack DB (MariaDB or MySQL): Remote access user accessible from the 

master host to ports 3306 or 3307 allowed access to all Databases as read-only. 

3. Master host SSH access: Remote access user with sudo privileges accessible from 

the master host through either user/pass or rsa keys, the master host itself should 

then be allowed access using rsa-keys (password-less) to all other infrastructure 

hosts, all allowing to run sudo CLI commands over tty, when commands entered 

from the master host source itself. 

4. AMQP message BUS (like Rabbitmq): allowed remote access from the master 

host to listen for all events generated using a guest account with a password. 

5. Physical switch controller (like ACI): admin user/pass accessed from master host. 

Note: The current lack of operational toolsets like Calipso forces the use of the above 

scanning methods, the purpose of Calipso is to deploy its scanning engine as an agent 

on all environment hosts, in such scenario the requirements above might be 

deprecated and the scanning itself can be made more efficient. 

3.3 Filling the environment config data 
As explained in chapter 1 above, environment configuration is the pre requisite and all 

data required is modeled as described. See api-guide for details on submitting those 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  11 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

details through calispo api module. When using the UI module, follow the sections 

tabs and fill the needed data per help messages and the explanations in chapter 1. 

Only the AMQP, Monitoring and ACI sections in environment_config documents are 

optional, per the requirements detailed below on this guide. 

3.4 Testing the connections 
Before submitting the environment_config document it is wise to test the connections. 

Each section tab in the environment configuration has an optional butting for testing 

the connection tagged “test connection”. When this button is clicked, a check is made 

to make sure all needed data is entered correctly, then a request is sent down to 

mongoDB to the “connection_tests” collection. Then the calispo scanning module will 

make the required test and will push back a response message alerting whether or not 

this connection is possible with the provided details and credentials. 

 

Test connection per configuration section: 

 
 

With the above tool, the administrator can be assured that Calipso scanning will be 

successful and the results will be an accurate representation of the state of he’s live 

environment. 

 

 

 

 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  12 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

4 Links and Cliques  
A very powerful capability in Calipso allows it to be very adaptive and support many 

variances of VIM environments, this capability lies in its objects, links and cliques models 

enabling the scanning of data and analysis of inter-connections and creation of many types 

of topology graphs.. 

Please refer to calipso-model document for more details. 

The UI allows viewing and editing of Link types and Clique types through the settings 

options: 

 

Link types: 

 

 
 

 

Note:  

We currently recommend not to add nor edit the Link types pre-built in Calipso’s latest 

release (allowed only for the ‘admin’ user), as it is tested and proven to support more than 

60 popular VIM variances. 

An administrator might choose to define several environment specific Clique types for 

creating favorite graphs using the focal_point objects and link_types lists already built-in: 

 

 

 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  13 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

 

4.1   Adding environment clique_types  
Use either the API or the UI to define specific environment clique_types. 

For adding clique_types, use settings menu and choose “Create new clique type” option, 

then provide a specific environment name (per previous environment configurations), define 

a focal_point (like: instance, or other object types) and a list of resulted link_types to 

include in the final topology graph. Refer to calipso-model document for more details. 

Clique_types are needed for accurate graph buildup, before sending a scan request. 

Several defaults are provided with each new Calipso release. 

 

Clique types: 

 

 
 

Here is a set of recommended clique_types (pre-built in several Calipso deployments), per 

distribution variance, fully tested by Calipso developers: 

 

Asdsa 

 

 

5 Environment scanning 
Once environment is setup correctly, environment_config data is filled and tested, 

scanning can start. This is can be done with the following four options: 

 

1. UI scanning request 

2. UI scan schedule request 

3. API scanning or scheduling request. 

4. CLI scanning in the calipso-scan container. 

 

The following sections with describe those scanning options. 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  14 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

5.1 UI scanning request 
This can be accomplished after environment configuration has been submitted, the 

environment name will be listed under “My environment” and the administrator can 

choose it from the list and login to the specific environment dashboard: 

 

 
 

Onces inside a specific environment dashboard the administrator can click the scanning 

button the go into scanning request wizards:  

 
 

 

 

 

 

 

 

 

 

 

 

 

In most cases, the only step needed to send a scanning request is to use all default 

options and click the “Submit” button: 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  15 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 
Scanning request will propagate into the “scans” collection and will be handled by 

scan_manager in the calipso-scan container. 

Scan options:  

Log level: determines the level and details of the scanning logs. 

Clear data: empty historical inventories related to that specific environment, before 

scanning. 

Only inventory: creates inventory objects without analyzing for links. 

Only links: create links from pre-existing inventory, does not build graph topologies. 

Only Cliques: create graph topologies from pre-existing inventory and links. 

 

5.2 UI scan schedule request 
Scanning can be used periodically to dynamically update the inventories per changes 

in the underlying virtual environment infrastructure. This can be defined using scan 

scheduling and can be combined with the above one time scanning request. 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  16 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 
 

Scheduled scans has the same options as in single scan request, while choosing a 

specific environment to schedule on and providing frequency details, timer is counted 

from the submission time, scan scheduling requests are propagated to the 

“scheduled_scans” collection in the Calispo mongoDB and handled by scan_manager 

in the calispo-scan container. 

5.3 API scanning request 
Follow api-guide for details on submitting scanning request through Calipso API. 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  17 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

5.4 CLI scanning in the calipso-scan container 
When using the UI for scanning messages are populated in the “Messages” menu item 

and includes several details for successful scanning and some alerts. When more 

detailed debugging of the scanning process is needed, administrator can login directly 

to the calispo-scan container and run the scanning manually using CLI: 

 

• Login to calispo-scan container running on the installed host: 

            ssh scan@localhost –p 3002 , using default-password: ‘scan’ 

• Move to the calipso scan application location: 

            cd /home/scan/calipso_prod/app/discover 

• Run the scan.py application with the basic default options: 

            python3 ./scan.py -m /local_dir/calipso_mongo_access.conf -e Mirantis-8 
 

Default options: -m points to the default location of mongoDB access details, -e points 

to the specific environment name, as submitted to mongoDB through UI or API. 

Other optional scanning parameters, can be used for detailed debugging: 

 

The scan.py script is located in directory app/discover in the Calipso repository. 

To show the help information, run scan.py with –help option, here is the results 

: 

Usage: scan.py [-h] [-c [CGI]] [-m [MONGO_CONFIG]] [-e [ENV]] [-t [TYPE]] 

               [-y [INVENTORY]] [-s] [-i [ID]] [-p [PARENT_ID]] 

               [-a [PARENT_TYPE]] [-f [ID_FIELD]] [-l [LOGLEVEL]] 

               [--inventory_only] [--links_only] [--cliques_only] [--clear] 

  

Optional arguments: 

 

  -h, --help            show this help message and exit 

  -c [CGI], --cgi [CGI] 

                        read argument from CGI (true/false) (default: false) 

  -m [MONGO_CONFIG], --mongo_config [MONGO_CONFIG] 

                        name of config file with MongoDB server access details 

  -e [ENV], --env [ENV] 

                        name of environment to scan (default: WebEX- 

                        Mirantis@Cisco) 

  -t [TYPE], --type [TYPE] 

                        type of object to scan (default: environment) 

  -y [INVENTORY], --inventory [INVENTORY] 

                        name of inventory collection (default: 'inventory') 

  -s, --scan_self       scan changes to a specific object (default: False) 

  -i [ID], --id [ID]    ID of object to scan (when scan_self=true) 

  -p [PARENT_ID], --parent_id [PARENT_ID] 

                        ID of parent object (when scan_self=true) 

  -a [PARENT_TYPE], --parent_type [PARENT_TYPE] 

                        type of parent object (when scan_self=true) 

  -f [ID_FIELD], --id_field [ID_FIELD] 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  18 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

                        name of ID field (when scan_self=true) (default: 'id', 

                        use 'name' for projects) 

 

  -l [LOGLEVEL], --loglevel [LOGLEVEL] 

                        logging level (default: 'INFO') 

  --inventory_only      do only scan to inventory (default: False) 

  --links_only          do only links creation (default: False) 

  --cliques_only        do only cliques creation (default: False) 

  --clear               clear all data prior to scanning (default: False) 

A simple scan.py run will look, by default, for a local MongoDB server. Assuming running 

this from within the scan container running, the administrator needs to point it to use the 

specific MongoDB server. This is done using the Mongo access config file created by the 

installer (see install-guide for details):: 

./scan.py -m your_mongo_access.conf  

Environment needs to be specified explicitly, no default environment is used by scanner. 

By default, the inventory collection, named 'inventory', along with the accompanying 

collections: "links", "cliques", "clique_types" and "clique_constraints" are used to place 

initial scanning data results. 

As a more granular scan example, for debugging purposes, using environment "RDO-

packstack-Mitaka", pointing scanning results to an inventory collection named "RDO": 

The accompanying collections will be automatically created and renamed accordingly: 

"RDO_links", "RDO_cliques", "RDO_clique_types" and "RDO_clique_constraints". 

Another parameter in use here is --clear, which is good for development: it clears all the 

previous data from the data collections (inventory, links & cliques). 

scan.py -m your_mongo_access.conf -e RDO-packstack-Mitaka -y RDO –clear 

 

Log level will provide the necessary details for cases of scan debugging.  

5.4.1 Clique Scanning 

For creating cliques based on the discovered objects and links, clique_types must be defined 

for the given environment (or a default “ANY” environment clique_types will be used) 

A clique type specifies the link types used in building a clique (graph topology) for a 

specific focal point object type. 

For example, it can define that for instance objects we want to have the following link types: 

• instance-vnic 

• vnic-vconnector 

• vconnector-vedge 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  19 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

• vedge-host_pnic 

• host_pnic-network 

See calipso-model guide for more details on cliques and links. 

As in many cases the same clique types are used, we can simply copy the clique_types 

documents from an existing clique_types collection. For example, using MongoChef: 

• Click the existing clique types collection 

• Right click the results area 

• Choose export 

• Click 'next' all the time (JSON format, to clipboard) 

• Select JSON format and "Overwrite document with the same _id" 

• Right click the target collection 

• Choose import, then JSON and clipboard 

• Note that the name of the target collection should have the prefix name of your 

collection's name. For example, you create a collection named your_test, then your 

clique types collection's name must be your_test_clique_types. 

Now run scan.py again to have it create cliques-only from that data. 

5.4.2 Viewing results 

Scan results are written into the collections in the ‘Calispo’ DB on the MongoDB database. 

In our example, we use the MongoDB database server on “install-hostname”http://korlev-

osdna-devtest.cisco.com/, so we can connect to it by Mongo client, such as Mongochef and 

investigate the specific collections for details. 

6 Editing or deleting environments 
Inside a specific environment dashboard optional buttons are available for deleting and 

editing the environment configurations: 

 

 
 

Note: Deleting an environment does not empty the inventories of previous scan results, this can 

be accomplished in future scans when using the --clear options. 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  20 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

7 Event-based scanning 
For dynamic discovery and real-time updates of the inventories Calipso also provides event-

based scanning with event_manager application in the calipso-listen container. 

Event_manager listens to the VIM AMQP BUS and based on the events updates the 

inventories and also kickoff automatic scanning of a specific object and its dependencies. 

7.1 Enabling event-based scanning 
Per environment, administrator can define the option of event-based scanning, using either 

UI or API to configure that parameter in the specific environment configuration: 

 

 
 

In cases where event-based scanning is not supported for a specific distribution variance the 

checkbox for event based scan will be grayed out. When checked, the AMQP section 

becomes mandatory. 

This behavior is maintained through the “supported_environments” collection and explained 

in more details in the calipso-model document. 

 

 

 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  21 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

7.2 Event-based handling details 
 

The event-based scanning module needs more work to adapt to the changes in any specific 

distribution variance, this is where we would like some community support to help us 

maintain data without the need for full or partial scanning through scheduling. 

In the following tables, some of the current capabilities of event-handling and event-based 

scanning in Calipso are explained: 

 

# Event 

name 

AMQP 

event 

Handler Workflow Scans Notes 

Instance 
1 Create 

Instance 

compute.inst

ance.create.e

nd 

EventInsta

nceAdd 

1. Get 

instances_root 

from inventory 

2. If instance_root is 

None, log error, 

return None 
3. Create 

ScanInstancesRoo

t object. 

4. Scan instances 

root (and only 

new instance as a 

child) 

5. Scan from queue 

6. Get host from 

inventory 

7. Scan host (and 

only children of 

types 

‘vconnectors_fold

er’ and 

‘vedges_folder’ 

8. Scan from queue 

9. Scan links 

10. Scan cliques 

11. Return True 

Yes 

{by object 

id: 2, 

links: 1, 

cliques: 1, 

from 

queue: ?} 

 

  

2 Update 

Instance 

compute.inst

ance.rebuild.

end 

compute.inst

ance.update 

EventInsta

nceUpdate 

1. If state == ‘building’, 

return None 

2. If state == ‘active’ and 

old_state == ‘building’, 

Yes (if #1 

is used) 

No 
(otherwise

) 

The only 

fields 

that are 

updated: 

name, 

object_na

me and 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  22 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

call EventInstanceAdd 

(see #1), return None 

3. If state == ‘deleted’ 

and old_state == ‘active’, 

call EventInstanceDelete 

(see #2), return None 

4. Get instance from 

inventory 

5. If instance is None, log 

error, return None 

6. Update several fields 

in instance. 

7. If name_path has 

changed, update relevant 

names and name_path for 

descendants 

8. Update instance in db 

9. Return None 

 

name_pat

h 

3 Delete 

Instance 

compute.inst

ance.delete.e

nd 

EventInsta

nceDelete 

(EventDel

eteBase) 

1. Extract id from 

payload 

2. Execute 

self.delete_handler() 

No delete_ha

ndler() is 

expanded 

later 

Instance Lifecycle 
4 Instance 

Down 

compute.inst

ance.shutdo

wn.start 

compute.inst

ance.power_

off.start 

compute.inst

ance.suspen

d.start 

Not 

implemen

ted 

   



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  23 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

5 Instance 

Up 

compute.inst

ance.power_

on.end 

compute.inst

ance.suspen

d.end 

Not 

implemen

ted 

   

Region 
6 Add 

Region 

servergroup.

create 
Not 

implemen

ted 

   

7 Update 

Region 

servergroup.

update 

servergroup.

addmember 

Not 

implemen

ted 

      

8 Delete 

Region 

servergroup.

delete 
Not 

implemen

ted 

      

Network 
9 Add 

Network 

network.crea

te.end 

EventNetw

orkAdd 

1. If network with 

specified id already 

exists, log error and 

return None 

2. Parse incoming data 

and create a network dict 

3. Save network in db 

4. Return None 

No   

10 Update 

Network 

network.upd

ate.end 

EventNetw

orkUpdate 

1. Get network_document 

from db 

2. If network_document 

doesn’t exist, log error 

and return None 

3. If name has changed, 

update relevant names 

and name_path for 

descendants 

No The only 

fields 

that are 

updated: 

name, 

object_na

me, 

name_pat

h and 

admin_st

ate_up 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  24 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

4. Update 

admin_state_up from 

payload 

5. Update 

network_document in db 

 

11 Delete 

Network 

network.dele

te.end 

EventNetw

orkDelete 

(EventDel

eteBase) 

1. Extract network_id 

from payload 

2. Execute 

self.delete_handler() 

No delete_ha

ndler() is 

expanded 

later 

Subnet 
12 Add 

Subnet 

subnet.creat

e.end 

EventSubn

etAdd 

1. Get network_document 

from db 

2. If network_document 

doesn’t exist, log error 

and return None 

3. Update 

network_document with 

new subnet 

4. If dhcp_enable is True, 

we update parent network 

(note 1) and add the 

following children docs: 

ports_folder, 

port_document, 

network_services_folder, 

dhcp_document, 

vnic_folder and 

vnic_document. 

5. Add links for pnics and 

vservice_vnics (note 2) 

6. Scan cliques 

7. Return None 

 

Yes 
{cliques: 

1} 

1. I don’t 

fully 

understan

d what 

these 

lines do. 

We make 

sure 

ApiAcces

s.regions 

variable 

is not 

empty, 

but why? 

The 

widespre

ad usage 

of static 

variables 

is not a 

good sign 

anyway. 

2. For 

some 

reason 

the 

comment 

before 

those 

lines 

states we 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  25 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

“scan for 

links” but 

it looks 

like we 

just add 

them. 

13 

 

Update 

Subnet 

subnet.updat

e.end 

EventSubn

etUpdate 

1. Get network_document 

from db 

2. If network_document 

doesn’t exist, log error 

and return None 

3. If we don’t have a 

matching subnet in 

network_document[‘subn

ets’], return None 

4. If subnet has 

enable_dhcp set to True 

and it wasn’t so before: 

4.1. Add dhcp document 

4.2. Make sure 

ApiAccess.regions is not 

empty 

4.3. Add port document 

4.4. If port has been 

added, add vnic 

document, add links and 

scan cliques. 

5. Is subnet has 

enable_dhcp set to False 

and it wasn’t so before: 

5.1. Delete dhcp 

document 

5.2. Delete port binding 

to dhcp server if exists 

Yes 
{cliques: 

1} (only if 

dhcp 

status has 

switched 

to True) 

1. If 

subnet 

name has 

changed, 

we set it 

in 

subnets 

object 

inside 

network_

document 

by new 

key, but 

don’t 

remove 

the old 

one. A 

bug? 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  26 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

6. If name hasn’t 

changed, update it by its 

key in subnets. 

Otherwise, set it by the 

new key in subnets. (note 

1) 

14 Delete 

Subnet 

subnet.delet

e.end 

EventSubn

etDelete 

1. Get network_document 

from db 

2. If network_document 

doesn’t exist, log error 

and return None 

3. Delete subnet id from 

network_document[‘subn

et_ids’] 

4. If subnet exists in 

network_document[‘subn

ets’], remove its cidr 

from 

network_document[‘cidrs

’] 

and remove itself from 

network_document[‘subn

ets’] 

5. Update 

network_document in db 

6. If no subnets are left in 

network_document, 

delete related vservice 

dhcp, port and vnic 

documents 

No  

Port 
15 Create 

Port 

port.create.e

nd 

EventPort

Add 

1. Check if ports folder 

exists, create if not. 

2. Add port document to 

db 

Yes 
{cliques: 

1} 

(only if 

‘compute’ 

is in 

port[‘devi

ce_owner’

1. The 

port and 

(maybe) 

port 

folder 

will still 

persist in 

db even 

if we 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  27 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

3. If ‘compute’ is not in 

port[‘device_owner’], 

return None 

4. Get old_instance_doc 

(updated instance 

document) from db 

5. Get instances_root 

from db 

6. If instances_root is 

None, log error and 

return None (note 1) 

7. Use an 

ApiFetchHostInstances 

fetcher to get data for 

instance with id equal to 

the device from payload. 

8. If such instance exists, 

update 

old_instance_doc’s fields 

network_info, network 

and possibly 

mac_address with their 

counterparts from fetched 

instance. Update 

old_instance_doc in db 

9. Use a 

CliFetchInstanceVnics/Cl

iFetchInstanceVnicsVpp 

fetcher to get vnic with 

mac_address equal to the 

port’s mac address 

10. If such vnic exists, 

update its data and update 

in db 

11. Add new links using 

FindLinksForInstanceVni

cs and 

] and 

instance_r

oot is not 

None (see 

steps 3 

and 6)) 

abort the 

execution 

on step 6. 

See idea 

1 for 

details. 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  28 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

FindLinksForVedges 

classes 

12. Scan cliques 

13. Return True 

 

16 Update 

Port 

port.update.

end 

EventPort

Update 

1. Get port from db 

2. If port doesn’t exist, 

log error and return 

None 

3. Update port data 

(name, admin_state_up, 

status, binding:vnic_type) 

in db 

4. Return None 

 

No  

17 Delete 

Port 

port.delete.e

nd 

EventPort

Delete 

(EventDel

eteBase) 

1. Get port from db 

2. If port doesn’t exist, 

log error and return 

None 

3. If ‘compute’ is in 

port[‘device_owner’], do 

the following: 

3.1. Get instance 

document for the port 

from db. If it doesn’t 

exist, to step 4. 

3.2. Remove port from 

network_info of instance 

3.3. If it was the last port 

for network in instance 

doc, remove network 

from the doc 

No delete_ha

ndler() is 

expanded 

later 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  29 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

3.4. If port’s 

mac_address is equal to 

instance_doc’s one, then 

fetch an instance with the 

same id as instance_doc 

using 

ApiFetchHostInstances 

fetcher. If instance exists 

and ‘mac_address’ not in 

instance, set 

instance_doc’s 

mac_address to None 

3.5. Save instance_docs 

in db 

4. Delete port from db 

5. Delete related vnic 

from db 

6. Execute 

self.delete_handler(vnic) 

for vnic 

Router 
18 Add 

Router 

router.create

.end 

EventRout

erAdd 

1. Get host by id from db 

2. Fetch router_doc using 

a CliFetchHostVservice 

3. If router_doc contains 

‘external_gateway_info’: 

3.1. Add router document 

(with network) to db 

3.2. Add children 

documents: 

3.3. If no ports folder 

exists for this router, 

create one 

3.4. Add router port to db 

Yes 
{cliques: 

1} 

1. Looks 

like code 

author 

confused 

a lot of 

stuff 

here. 

This 

class 

needs to 

be 

reviewed 

thoroughl

y. 

2. Step 

3.7 never 

returns 

anything 

for some 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  30 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

3.5. Add vnics folder for 

router to db 

3.6. If port was 

successfully added (3.4), 

try to add vnic document 

for router to db two times 

(??) 

3.7. If port wasn’t 

successfully added, try 

adding vnics_folder again 

(???) (note 1) 

3.8. If step 3.7 returned 

False (Note 2), try to add 

vnic_document again (??) 

4. Add router document 

(without network) to db 

(Note 3) 

5. Add relevant links for 

the new router 

6. Scan cliques 

7. Return None 

reason (a 

bug?) 

3. Why 

are we 

adding 

router 

document 

again? It 

shouldn’t 

be added 

again on 

step 4 if 

it was 

already 

added on 

step 3.1. 

Probably 

an ‘else’ 

clause is 

missing 

19 Update 

Router 

router.updat

e.end 

EventRout

erUpdate 

1. Get router_doc from 

db 

2. If router_doc doesn’t 

exist, log error and 

return None 

3. If payload router data 

doesn’t have 

external_gateway_info, 

do the following: 

3.1. If router_doc has a 

‘gw_port_id’ key, delete 

relevant port. 

Yes 
{cliques: 

1} 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  31 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

3.2. If router_doc has a 

‘network’: 

3.2.1. If a port was 

deleted on step 3.1, 

remove its ‘network_id’ 

from 

router_doc[‘network’] 

3.2.2. Delete related links 

4. If payload router data 

has 

external_gateway_info, 

do the following: 

4.1. Add new network id 

to router_doc networks 

4.2. Use 

CliFetchHostVservice to 

fetch gateway port and 

update it in router_doc 

4.3. Add children 

documents for router (see 

#18 steps 3.2-3.8) 

4.4. Add relevant links 

5. Update router_doc in 

db 

6. Scan cliques 

7. Return None 

20 Delete 

Router 

router.delete

.end 

EventRout

erDelete 

(EventDel

eteBase) 

1. Extract router_id from 

payload 

2. Execute 

self.delete_handler() 

No delete_ha

ndler() is 

expanded 

later 

Router Interface 
21 Add 

Router 

Interface 

router.interf

ace.create 

EventInter

faceAdd 

1. Get network_doc from 

db based on subnet id 

from interface payload 

Yes 
{cliques: 

1} 

1. Log 

message 

states 

that we 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  32 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

2. If network_doc doesn’t 

exist, return None 

3. Make sure 

ApiAccess.regions is not 

empty (?) 

4. Add router-interface 

port document in db 

5. Add vnic document for 

interface. If unsuccessful, 

try again after a small 

delay 

6. Update router: 

6.1. If router_doc is an 

empty type, log an error 

and continue to step 7 

(Note 1) 

6.2. Add new network id 

to router_doc network 

list 

6.3. If gateway port is in 

both router_doc and db, 

continue to step 6.7 

6.4. Fetch router using 

CliFetchHostVservice, 

set gateway port in 

router_doc to the one 

from fetched router 

6.5. Add gateway port to 

db 

6.6. Add vnic document 

for router. If 

unsuccessful, try again 

after a small delay 

should 

abort 

interface 

adding, 

though 

the code 

does 

nothing 

to 

support 

that. 

Moreover

, 

router_do

c can’t be 

empty at 

that 

moment 

because 

it’s 

reference

d before. 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  33 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

6.7. Update router_id in 

db 

7. Add relevant links 

8. Scan cliques 

9. Return None 

22 Delete 

Router 

Interface 

router.interf

ace.delete 

EventInter

faceDelete 

1. Get port_doc by 

payload port id from db 

2. If port_doc doesn’t 

exist, log an error and 

return None 

3. Update relevant router 

by removing network id 

of port_doc 

4. Delete port by 

executing 

EventPortDelete().delete

_port() 

No  

  

8 ACI scanning 
For dynamic discovery and real-time updates of physical switches and connections between 

physical switches ports and host ports (pNICs), Calispo provides an option to integrate with 

the Cisco data center switches controller called “ACI APIC”.  

 

This is an optional parameter and once checked details on the ACI server and API 

credentials needs to be provided: 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  34 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 
 

The results of this integration (when ACI switches are used in that specific VIM 

environment) are extremely valuable as it maps out and monitors virtual-to-physical 

connectivity across the entire data center environment, both internal and external. 

Example graph generated in such environments: 

 
 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  35 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 
 

 
 

9 Monitoring enablement  
For dynamic discovery of real-time statuses and states of physical and virtual components 

and thier connections Calispo provides an option to automatically integrate with the Sensu 

framework, customized and adapted from the Calispo model and design concepts. Follow 

the monitoring-guide for details on this optional module. 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  36 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enabling Monitoring through UI, using environment configuration wizard: 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  37 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 
 

 

 

 

 

 

 

 

 

 



Date printed: 9/26/2017 calipso.io project 

 

Aug 2017 Cisco for OPNFV  38 Public version  

A printed copy of this document is considered uncontrolled.  Refer to the online version for the controlled revision. 

 


